62 research outputs found

    The Undecidability of Typability in the Lambda-Pi-Calculus

    Full text link
    The set of pure terms which are typable in the λ\lambdaΠ\Pi-calculus in a given context is not recursive. So there is no general type inference algorithm for the programming language Elf and, in some cases, some type information has to be mentioned by the programmer

    The Algebraic Intersection Type Unification Problem

    Full text link
    The algebraic intersection type unification problem is an important component in proof search related to several natural decision problems in intersection type systems. It is unknown and remains open whether the algebraic intersection type unification problem is decidable. We give the first nontrivial lower bound for the problem by showing (our main result) that it is exponential time hard. Furthermore, we show that this holds even under rank 1 solutions (substitutions whose codomains are restricted to contain rank 1 types). In addition, we provide a fixed-parameter intractability result for intersection type matching (one-sided unification), which is known to be NP-complete. We place the algebraic intersection type unification problem in the context of unification theory. The equational theory of intersection types can be presented as an algebraic theory with an ACI (associative, commutative, and idempotent) operator (intersection type) combined with distributivity properties with respect to a second operator (function type). Although the problem is algebraically natural and interesting, it appears to occupy a hitherto unstudied place in the theory of unification, and our investigation of the problem suggests that new methods are required to understand the problem. Thus, for the lower bound proof, we were not able to reduce from known results in ACI-unification theory and use game-theoretic methods for two-player tiling games

    A Coq Library of Undecidable Problems

    Get PDF
    International audienceWe propose a talk on our library of mechanised reductions to establish undecidability results in Coq. The library is a collaborative effort, growing constantly and we are seeking more outside contributors willing to work on undecidability results in Coq

    Verification of PCP-Related Computational Reductions in Coq

    Full text link
    We formally verify several computational reductions concerning the Post correspondence problem (PCP) using the proof assistant Coq. Our verifications include a reduction of a string rewriting problem generalising the halting problem for Turing machines to PCP, and reductions of PCP to the intersection problem and the palindrome problem for context-free grammars. Interestingly, rigorous correctness proofs for some of the reductions are missing in the literature

    Third-order matching in λ\lambda\rightarrow-Curry is undecidable

    Get PDF
    Given closed untyped λ\lambda-terms λx1...xk.s\lambda x1... xk.s and tt, which can be assigned some types S1>...>Sk>TS1->...->Sk->T and TT respectively in the Curry-style systems of type assignment (essentially due to R.~Hindley) λ>\lambda->-Curry [Barendregt 92], λt>\lambda^{->}_t [Mitchell 96], TAλTA_\lambda [Hindley97], it is undecidable whether there exist closed terms s1,...,sks1,...,sk of types S1,...,SkS1,...,Sk such that s[s1/x1,...,sk/xk]=βηts[s1/x1,...,sk/xk]=_{\beta\eta}t, even if the orders of sisi's do not exceed 3. This undecidability result should be contrasted to the decidability of the third-order matching in the Church-style simply typed lambda calculus with a single constant base type [Dowek 92]. The proof is by reduction from the recursively inseparable sets of invalid and finitely satisfiable sentences of the first-order theory of binary relation [Trakhtenbrot 53, Vaught 60]

    Strong normalization from an unusual point of view

    Get PDF
    AbstractA new complete characterization of β-strong normalization is given, both in the classical and in the lazy λ-calculus, through the notion of potential valuability inside two suitable parametric calculi

    Type Directed Specification Refinement

    Get PDF
    Specification languages serve a fundamentally different purpose than general-purpose programming languages, and their type systems reflect these needs. Specification type systems must record and track more information for us to reason about a system adequately, and this added expressiveness may lead to an undecidable typing analysis. System level design begins with a high-level specification that is continually refined and expanded with implementation details, constraints, and typing information, down to a concrete specification. During this refinement process, the system is underspecified, and many static analyses aren't applicable until the system is fully specified. However, partial specifications contain valuable information that can inform the refinement process--we can locally inspect parts of the specification from a typing perspective to look for inferrable information or inconsistencies early on to aid the refinement process. This work defines a typing analysis that gathers constraints and typing information to inform the specification refinement process. It explores localized techniques such as local type inference and tracking of values as a means of influencing the specification refinement process

    Computability in constructive type theory

    Get PDF
    We give a formalised and machine-checked account of computability theory in the Calculus of Inductive Constructions (CIC), the constructive type theory underlying the Coq proof assistant. We first develop synthetic computability theory, pioneered by Richman, Bridges, and Bauer, where one treats all functions as computable, eliminating the need for a model of computation. We assume a novel parametric axiom for synthetic computability and give proofs of results like Rice’s theorem, the Myhill isomorphism theorem, and the existence of Post’s simple and hypersimple predicates relying on no other axioms such as Markov’s principle or choice axioms. As a second step, we introduce models of computation. We give a concise overview of definitions of various standard models and contribute machine-checked simulation proofs, posing a non-trivial engineering effort. We identify a notion of synthetic undecidability relative to a fixed halting problem, allowing axiom-free machine-checked proofs of undecidability. We contribute such undecidability proofs for the historical foundational problems of computability theory which require the identification of invariants left out in the literature and now form the basis of the Coq Library of Undecidability Proofs. We then identify the weak call-by-value λ-calculus L as sweet spot for programming in a model of computation. We introduce a certifying extraction framework and analyse an axiom stating that every function of type ℕ → ℕ is L-computable.Wir behandeln eine formalisierte und maschinengeprüfte Betrachtung von Berechenbarkeitstheorie im Calculus of Inductive Constructions (CIC), der konstruktiven Typtheorie die dem Beweisassistenten Coq zugrunde liegt. Wir entwickeln erst synthetische Berechenbarkeitstheorie, vorbereitet durch die Arbeit von Richman, Bridges und Bauer, wobei alle Funktionen als berechenbar behandelt werden, ohne Notwendigkeit eines Berechnungsmodells. Wir nehmen ein neues, parametrisches Axiom für synthetische Berechenbarkeit an und beweisen Resultate wie das Theorem von Rice, das Isomorphismus Theorem von Myhill und die Existenz von Post’s simplen und hypersimplen Prädikaten ohne Annahme von anderen Axiomen wie Markov’s Prinzip oder Auswahlaxiomen. Als zweiten Schritt führen wir Berechnungsmodelle ein. Wir geben einen kompakten Überblick über die Definition von verschiedenen Berechnungsmodellen und erklären maschinengeprüfte Simulationsbeweise zwischen diesen Modellen, welche einen hohen Konstruktionsaufwand beinhalten. Wir identifizieren einen Begriff von synthetischer Unentscheidbarkeit relativ zu einem fixierten Halteproblem welcher axiomenfreie maschinengeprüfte Unentscheidbarkeitsbeweise erlaubt. Wir erklären solche Beweise für die historisch grundlegenden Probleme der Berechenbarkeitstheorie, die das Identifizieren von Invarianten die normalerweise in der Literatur ausgelassen werden benötigen und nun die Basis der Coq Library of Undecidability Proofs bilden. Wir identifizieren dann den call-by-value λ-Kalkül L als sweet spot für die Programmierung in einem Berechnungsmodell. Wir führen ein zertifizierendes Extraktionsframework ein und analysieren ein Axiom welches postuliert dass jede Funktion vom Typ N→N L-berechenbar ist

    Preciseness of Subtyping on Intersection and Union Types

    Get PDF
    Abstract. The notion of subtyping has gained an important role both in theoretical and applicative domains: in lambda and concurrent calculi as well as in programming languages. The soundness and the complete-ness, together referred to as the preciseness of subtyping, can be consid-ered from two different points of view: denotational and operational. The former preciseness is based on the denotation of a type which is a math-ematical object that describes the meaning of the type in accordance with the denotations of other expressions from the language. The latter preciseness has been recently developed with respect to type safety, i.e. the safe replacement of a term of a smaller type when a term of a bigger type is expected. We propose a technique for formalising and proving operational pre-ciseness of the subtyping relation in the setting of a concurrent lambda calculus with intersection and union types. The key feature is the link between typings and the operational semantics. We then prove sound-ness and completeness getting that the subtyping relation of this calculus enjoys both denotational and operational preciseness.

    Typability and type checking in the second-order Λ-calculus are equivalent and undecidable (Preliminary Draft)

    Full text link
    We consider the problems of typability[1] and type checking[2] in the Girard/Reynolds second-order polymorphic typed λ-calculus, for which we use the short name "System F" and which we use in the "Curry style" where types are assigned to pure λ -terms. These problems have been considered and proven to be decidable or undecidable for various restrictions and extensions of System F and other related systems, and lower-bound complexity results for System F have been achieved, but they have remained "embarrassing open problems"[3] for System F itself. We first prove that type checking in System F is undecidable by a reduction from semi-unification. We then prove typability in System F is undecidable by a reduction from type checking. Since the reverse reduction is already known, this implies the two problems are equivalent. The second reduction uses a novel method of constructing λ-terms such that in all type derivations, specific bound variables must always be assigned a specific type. Using this technique, we can require that specific subterms must be typable using a specific, fixed type assignment in order for the entire term to be typable at all. Any desired type assignment may be simulated. We develop this method, which we call "constants for free", for both the λK and λI calculi.NSF (CCR-9113196
    corecore