11,171 research outputs found

    On the Spectral Properties of Symmetric Functions

    Get PDF
    We characterize the approximate monomial complexity, sign monomial complexity , and the approximate L 1 norm of symmetric functions in terms of simple combinatorial measures of the functions. Our characterization of the approximate L 1 norm solves the main conjecture in [AFH12]. As an application of the characterization of the sign monomial complexity, we prove a conjecture in [ZS09] and provide a characterization for the unbounded-error communication complexity of symmetric-xor functions

    Unbounded-error One-way Classical and Quantum Communication Complexity

    Full text link
    This paper studies the gap between quantum one-way communication complexity Q(f)Q(f) and its classical counterpart C(f)C(f), under the {\em unbounded-error} setting, i.e., it is enough that the success probability is strictly greater than 1/2. It is proved that for {\em any} (total or partial) Boolean function ff, Q(f)=⌈C(f)/2⌉Q(f)=\lceil C(f)/2 \rceil, i.e., the former is always exactly one half as large as the latter. The result has an application to obtaining (again an exact) bound for the existence of (m,n,p)(m,n,p)-QRAC which is the nn-qubit random access coding that can recover any one of mm original bits with success probability ≥p\geq p. We can prove that (m,n,>1/2)(m,n,>1/2)-QRAC exists if and only if m≤22n−1m\leq 2^{2n}-1. Previously, only the construction of QRAC using one qubit, the existence of (O(n),n,>1/2)(O(n),n,>1/2)-RAC, and the non-existence of (22n,n,>1/2)(2^{2n},n,>1/2)-QRAC were known.Comment: 9 pages. To appear in Proc. ICALP 200

    Unbounded-Error Classical and Quantum Communication Complexity

    Full text link
    Since the seminal work of Paturi and Simon \cite[FOCS'84 & JCSS'86]{PS86}, the unbounded-error classical communication complexity of a Boolean function has been studied based on the arrangement of points and hyperplanes. Recently, \cite[ICALP'07]{INRY07} found that the unbounded-error {\em quantum} communication complexity in the {\em one-way communication} model can also be investigated using the arrangement, and showed that it is exactly (without a difference of even one qubit) half of the classical one-way communication complexity. In this paper, we extend the arrangement argument to the {\em two-way} and {\em simultaneous message passing} (SMP) models. As a result, we show similarly tight bounds of the unbounded-error two-way/one-way/SMP quantum/classical communication complexities for {\em any} partial/total Boolean function, implying that all of them are equivalent up to a multiplicative constant of four. Moreover, the arrangement argument is also used to show that the gap between {\em weakly} unbounded-error quantum and classical communication complexities is at most a factor of three.Comment: 11 pages. To appear at Proc. ISAAC 200

    Samplers and Extractors for Unbounded Functions

    Get PDF
    Blasiok (SODA\u2718) recently introduced the notion of a subgaussian sampler, defined as an averaging sampler for approximating the mean of functions f from {0,1}^m to the real numbers such that f(U_m) has subgaussian tails, and asked for explicit constructions. In this work, we give the first explicit constructions of subgaussian samplers (and in fact averaging samplers for the broader class of subexponential functions) that match the best known constructions of averaging samplers for [0,1]-bounded functions in the regime of parameters where the approximation error epsilon and failure probability delta are subconstant. Our constructions are established via an extension of the standard notion of randomness extractor (Nisan and Zuckerman, JCSS\u2796) where the error is measured by an arbitrary divergence rather than total variation distance, and a generalization of Zuckerman\u27s equivalence (Random Struct. Alg.\u2797) between extractors and samplers. We believe that the framework we develop, and specifically the notion of an extractor for the Kullback-Leibler (KL) divergence, are of independent interest. In particular, KL-extractors are stronger than both standard extractors and subgaussian samplers, but we show that they exist with essentially the same parameters (constructively and non-constructively) as standard extractors
    • …
    corecore