383 research outputs found

    Chromatic number of the product of graphs, graph homomorphisms, Antichains and cofinal subsets of posets without AC

    Full text link
    We have observations concerning the set theoretic strength of the following combinatorial statements without the axiom of choice. 1. If in a partially ordered set, all chains are finite and all antichains are countable, then the set is countable. 2. If in a partially ordered set, all chains are finite and all antichains have size ℵα\aleph_{\alpha}, then the set has size ℵα\aleph_{\alpha} for any regular ℵα\aleph_{\alpha}. 3. CS (Every partially ordered set without a maximal element has two disjoint cofinal subsets). 4. CWF (Every partially ordered set has a cofinal well-founded subset). 5. DT (Dilworth's decomposition theorem for infinite p.o.sets of finite width). 6. If the chromatic number of a graph G1G_{1} is finite (say k<ωk<\omega), and the chromatic number of another graph G2G_{2} is infinite, then the chromatic number of G1×G2G_{1}\times G_{2} is kk. 7. For an infinite graph G=(VG,EG)G=(V_{G}, E_{G}) and a finite graph H=(VH,EH)H=(V_{H}, E_{H}), if every finite subgraph of GG has a homomorphism into HH, then so has GG. Further we study a few statements restricted to linearly-ordered structures without the axiom of choice.Comment: Revised versio

    Combinatorial Properties and Dependent choice in symmetric extensions based on L\'{e}vy Collapse

    Get PDF
    We work with symmetric extensions based on L\'{e}vy Collapse and extend a few results of Arthur Apter. We prove a conjecture of Ioanna Dimitriou from her P.h.d. thesis. We also observe that if VV is a model of ZFC, then DC<κDC_{<\kappa} can be preserved in the symmetric extension of VV in terms of symmetric system ⟨P,G,F⟩\langle \mathbb{P},\mathcal{G},\mathcal{F}\rangle, if P\mathbb{P} is κ\kappa-distributive and F\mathcal{F} is κ\kappa-complete. Further we observe that if VV is a model of ZF + DCκDC_{\kappa}, then DC<κDC_{<\kappa} can be preserved in the symmetric extension of VV in terms of symmetric system ⟨P,G,F⟩\langle \mathbb{P},\mathcal{G},\mathcal{F}\rangle, if P\mathbb{P} is κ\kappa-strategically closed and F\mathcal{F} is κ\kappa-complete.Comment: Revised versio

    On the structure of classical realizability models of ZF

    Get PDF
    The technique of "classical realizability" is an extension of the method of "forcing"; it permits to extend the Curry-Howard correspondence between proofs and programs, to Zermelo-Fraenkel set theory and to build new models of ZF, called "realizability models". The structure of these models is, in general, much more complicated than that of the particular case of "forcing models". We show here that the class of constructible sets of any realizability model is an elementary extension of the constructibles of the ground model (a trivial fact in the case of forcing, since these classes are identical). It follows that Shoenfield absoluteness theorem applies to realizability models.Comment: 17 page
    • …
    corecore