3,093 research outputs found

    A Study of Channel Estimation in Multi-Band OFDM UWB Systems

    Full text link
    In this paper, the channel estimation techniques for multiband (MB) OFDM ultra-wideband (UWB) wireless communications are investigated. By combining orthogonal frequency-division multiplexing (OFDM) with multi-band, the MB-OFDM systems can capture multipath energy more efficiently than single-band direct sequence UWB (DS-UWB). However, most researches for UWB channel estimation are focused on the latter. Through the analysis of architecture, signal and channel model of MB-OFDM UWB wireless systems, we studied the channel estimation techniques based on preamble training sequences and pilot sub-carriers respectively. Further more, the linear estimations of least square (LS) and minimum mean square error (MMSE) are analysed and compared under different UWB channel conditions. The characteristic of estimation error changing with the SNR is also discussed. The estimation error includes the impact of interpolation error and channel noise

    A Novel Frequency Synchronization Algorithm and its Cramer Rao Bound in Practical UWB Environment for MB-OFDM Systems

    Get PDF
    This paper presents an efficient time-domain coarse frequency offset (FO) synchronizer (TCFS) for multi-band orthogonal frequency division multiplexing (MB-OFDM) systems effective for practical ultra-wideband (UWB) environment. The proposed algorithm derives its estimates based on phase differences in the received subcarrier signals of several successive OFDM symbols in the preamble. We consider different carrier FOs and different channel responses in different bands to keep the analysis and simulation compatible for practical multiband UWB scenario. Performance of the algorithm is studied by means of bit error rate (BER) analysis of MBOFDM system. We derive the Cramer Rao lower bound (CRLB) of the estimation error variance and compare it with the simulated error variance both in additive white Gaussian noise and UWB channel model (CM) environments, CM1-CM4. Both analysis and simulation show that TCFS can estimate coarse carrier FO more efficiently in UWB fading channels for MB-OFDM applications compared to the other reported results in literature. Also, computational complexity of the proposed algorithm is analyzed for its usability evaluation

    Performance Analysis and Enhancement of Multiband OFDM for UWB Communications

    Full text link
    In this paper, we analyze the frequency-hopping orthogonal frequency-division multiplexing (OFDM) system known as Multiband OFDM for high-rate wireless personal area networks (WPANs) based on ultra-wideband (UWB) transmission. Besides considering the standard, we also propose and study system performance enhancements through the application of Turbo and Repeat-Accumulate (RA) codes, as well as OFDM bit-loading. Our methodology consists of (a) a study of the channel model developed under IEEE 802.15 for UWB from a frequency-domain perspective suited for OFDM transmission, (b) development and quantification of appropriate information-theoretic performance measures, (c) comparison of these measures with simulation results for the Multiband OFDM standard proposal as well as our proposed extensions, and (d) the consideration of the influence of practical, imperfect channel estimation on the performance. We find that the current Multiband OFDM standard sufficiently exploits the frequency selectivity of the UWB channel, and that the system performs in the vicinity of the channel cutoff rate. Turbo codes and a reduced-complexity clustered bit-loading algorithm improve the system power efficiency by over 6 dB at a data rate of 480 Mbps.Comment: 32 pages, 10 figures, 1 table. Submitted to the IEEE Transactions on Wireless Communications (Sep. 28, 2005). Minor revisions based on reviewers' comments (June 23, 2006

    Ultra-wideband radio signals distribution in FTTH networks

    Get PDF
    The use of an ultra-wideband (UWB) radio technique is proposed as a viable solution for the distribution of high-definition audio/video content in fiber-to-the-home (FTTH) networks. The approach suitability is demonstrated by the transmission of standards-based UWB signals at 1.25 Gb/s along different FTTH fiber links with 25 km up to 60 km of standard single-mode fiber length in a laboratory experiment. Experimental results suggest that orthogonal frequency-division-multiplexed UWB signals exhibit better transmission performance in FFTH networks than impulse radio UWB signals

    Error Rate Analysis for Coded Multicarrier Systems over Quasi-Static Fading Channels

    Full text link
    This paper presents two methods for approximating the performance of coded multicarrier systems operating over frequency-selective, quasi-static fading channels with non-ideal interleaving. The first method is based on approximating the performance of the system over each realization of the channel, and is suitable for obtaining the outage performance of this type of system. The second method is based on knowledge of the correlation matrix of the frequency-domain channel gains and can be used to directly obtain the average performance. Both of the methods are applicable for convolutionally-coded interleaved systems employing Quadrature Amplitude Modulation (QAM). As examples, both methods are used to study the performance of the Multiband Orthogonal Frequency Division Multiplexing (OFDM) proposal for high data-rate Ultra-Wideband (UWB) communication.Comment: 5 pages, 3 figures, 2 tables. Submitted to Globecom 200

    Joint distribution of polarization-multiplexed UWB and WiMAX radio in PON

    Get PDF
    In this paper, the feasibility of the joint distribution of ultra-wideband (UWB) and WIMAX wireless using polarization multiplexing as a coexistence technique is proposed and experimentally demonstrated within the framework of passive optical networks (PON). Four single- and orthogonal-polarization multiplexing schemes are studied targeting to reduce the mutual interference when UWB and WiMAX are distributed jointly through standard single-mode fiber (SSMF) without transmission impairments compensation techniques and amplification. Experimental results indicate successful transmission up to 25 km, in SSMF exceeding the range in typical PON deployments. The radio link penalty introduced by optical transmission is also investigated in this paper

    Performance of MB-OFDM UWB and WiMAX IEEE 802.16e converged radio-over-fiber in PON

    Get PDF
    Experimental results about the performance of converged radio-over- fiber transmission including multiband- OFDM UWB and WiMAX 802.16e wireless over a passive optical network are reported in this paper. The experimental study indicates that UWB and WiMAX converged transmission is feasible over the proposed distribution set-up employing a single wavelength. However, the results indicate that there is an EVM penalty of 3.2 dB for a UWB 10 km SSMF transmission in presence of WiMAX wireless

    Integrated performance analysis of UWB wireless optical transmission in FTTH networks

    Get PDF
    The optical transmission of full standard ECMA_368 OFDM_UWB signals 400 Mbit/s per single user over 50 km SSMF, and the impact of optical transmission in the radio performance experimentally analyzed in this paper
    • …
    corecore