27,823 research outputs found

    A Machine-Independent port of the MPD language run time system to NetBSD

    Full text link
    SR (synchronizing resources) is a PASCAL - style language enhanced with constructs for concurrent programming developed at the University of Arizona in the late 1980s. MPD (presented in Gregory Andrews' book about Foundations of Multithreaded, Parallel, and Distributed Programming) is its successor, providing the same language primitives with a different, more C-style, syntax. The run-time system (in theory, identical, but not designed for sharing) of those languages provides the illusion of a multiprocessor machine on a single Unix-like system or a (local area) network of Unix-like machines. Chair V of the Computer Science Department of the University of Bonn is operating a laboratory for a practical course in parallel programming consisting of computing nodes running NetBSD/arm, normally used via PVM, MPI etc. We are considering to offer SR and MPD for this, too. As the original language distributions were only targeted at a few commercial Unix systems, some porting effort is needed. However, some of the porting effort of our earlier SR port should be reusable. The integrated POSIX threads support of NetBSD-2.0 and later allows us to use library primitives provided for NetBSD's phtread system to implement the primitives needed by the SR run-time system, thus implementing 13 target CPUs at once and automatically making use of SMP on VAX, Alpha, PowerPC, Sparc, 32-bit Intel and 64 bit AMD CPUs. We'll present some methods used for the impementation and compare some performance values to the traditional implementation.Comment: 6 page

    Usage of LSF for batch farms at CERN

    Get PDF
    CERN uses Platforms Load Sharing Facility (LSF) since 1998 to manage the large batch system installations. Since that time, the farm has increased significantly, and commodity based hardware running GNU/Linux has replaced other Unix flavors on specialized hardware. In this paper we will present how the system is set up nowadays. We will briefly report on issues seen in the past, and actions which have been taken to resolve them. In this context the status of the evaluation of the most recent version of this product, LSF 7.0, is presented, and the planned migration scenario is described

    Secure Data Sharing With AdHoc

    Get PDF
    In the scientific circles, there is pressing need to form temporary and dynamic collaborations to share diverse resources (e.g. data, an access to services, applications or various instruments). Theoretically, the traditional grid technologies respond to this need with the abstraction of a Virtual Organization (VO). In practice its procedures are characterized by latency, administrative overhead and are inconvenient to its users. We would like to propose the Manifesto for Secure Sharing. The main postulate is that users should be able to share data and resources by themselves without any intervention on the system administrator's side. In addition, operating an intuitive interface does not require IT skills. AdHoc is a resource sharing interface designed for users willing to share data or computational resources within seconds and almost effortlessly. The AdHoc application is built on the top of traditional security frameworks, such as the PKI X.509 certificate scheme, Globus GSI, gLite VOMS and Shibboleth. It enables users rapid and secure collaboration

    You and I are Past Our Dancing Days

    Get PDF
    Operating systems have grown in size and functionality. Today's many flavours of Unix provide a multi-user environment with protection, address spaces, and attempts to allocate resources fairly to users competing for them, They provide processes and threads, mechanisms for synchronization and memory sharing, blocking and nonblocking system calls, and a complex file system. Since it was first introduced, Unix has grown more then a factor twenty in size. Several operating systems now consist of a microkernel, surrounded by user-space services [Accetta et al., 1986; Mullender et al., 1990; Rozier et al., 1988]. Together they provide the functionality of the operating system. This operating system structure provides an opportunity to make operating systems even larger. The trend for operating systems to grow more and more baroque was signalled more than a decade ago [Feldman, 1980], but has continued unabated until, today, we have OSF/1, the most baroque Unix system ever. And we have Windows/NT as a demonstration that MS-DOS also needed to be replaced by something much bigger and a little better.\ud In this position paper, I am asking what community we serve with our operating systems research. Should we continue doing this, or can we make ourselves more useful to society and industry by using our experience in operating systems in new environments.\ud I argue that there is very little need for bigger and better operating systems; that, in fact, most cPus will never run an operating system at all; and that our experience in operating systems will be better applied to designing new generations of distributed and ubiquitous applications

    How open is open enough?: Melding proprietary and open source platform strategies

    Get PDF
    Computer platforms provide an integrated architecture of hardware and software standards as a basis for developing complementary assets. The most successful platforms were owned by proprietary sponsors that controlled platform evolution and appropriated associated rewards. Responding to the Internet and open source systems, three traditional vendors of proprietary platforms experimented with hybrid strategies which attempted to combine the advantages of open source software while retaining control and differentiation. Such hybrid standards strategies reflect the competing imperatives for adoption and appropriability, and suggest the conditions under which such strategies may be preferable to either the purely open or purely proprietary alternatives

    Operating-system support for distributed multimedia

    Get PDF
    Multimedia applications place new demands upon processors, networks and operating systems. While some network designers, through ATM for example, have considered revolutionary approaches to supporting multimedia, the same cannot be said for operating systems designers. Most work is evolutionary in nature, attempting to identify additional features that can be added to existing systems to support multimedia. Here we describe the Pegasus project's attempt to build an integrated hardware and operating system environment from\ud the ground up specifically targeted towards multimedia

    Practical Fine-grained Privilege Separation in Multithreaded Applications

    Full text link
    An inherent security limitation with the classic multithreaded programming model is that all the threads share the same address space and, therefore, are implicitly assumed to be mutually trusted. This assumption, however, does not take into consideration of many modern multithreaded applications that involve multiple principals which do not fully trust each other. It remains challenging to retrofit the classic multithreaded programming model so that the security and privilege separation in multi-principal applications can be resolved. This paper proposes ARBITER, a run-time system and a set of security primitives, aimed at fine-grained and data-centric privilege separation in multithreaded applications. While enforcing effective isolation among principals, ARBITER still allows flexible sharing and communication between threads so that the multithreaded programming paradigm can be preserved. To realize controlled sharing in a fine-grained manner, we created a novel abstraction named ARBITER Secure Memory Segment (ASMS) and corresponding OS support. Programmers express security policies by labeling data and principals via ARBITER's API following a unified model. We ported a widely-used, in-memory database application (memcached) to ARBITER system, changing only around 100 LOC. Experiments indicate that only an average runtime overhead of 5.6% is induced to this security enhanced version of application
    corecore