203,927 research outputs found

    Mobile vs. point guards

    Get PDF
    We study the problem of guarding orthogonal art galleries with horizontal mobile guards (alternatively, vertical) and point guards, using "rectangular vision". We prove a sharp bound on the minimum number of point guards required to cover the gallery in terms of the minimum number of vertical mobile guards and the minimum number of horizontal mobile guards required to cover the gallery. Furthermore, we show that the latter two numbers can be calculated in linear time.Comment: This version covers a previously missing case in both Phase 2 &

    Searching Polyhedra by Rotating Half-Planes

    Full text link
    The Searchlight Scheduling Problem was first studied in 2D polygons, where the goal is for point guards in fixed positions to rotate searchlights to catch an evasive intruder. Here the problem is extended to 3D polyhedra, with the guards now boundary segments who rotate half-planes of illumination. After carefully detailing the 3D model, several results are established. The first is a nearly direct extension of the planar one-way sweep strategy using what we call exhaustive guards, a generalization that succeeds despite there being no well-defined notion in 3D of planar "clockwise rotation". Next follow two results: every polyhedron with r>0 reflex edges can be searched by at most r^2 suitably placed guards, whereas just r guards suffice if the polyhedron is orthogonal. (Minimizing the number of guards to search a given polyhedron is easily seen to be NP-hard.) Finally we show that deciding whether a given set of guards has a successful search schedule is strongly NP-hard, and that deciding if a given target area is searchable at all is strongly PSPACE-hard, even for orthogonal polyhedra. A number of peripheral results are proved en route to these central theorems, and several open problems remain for future work.Comment: 45 pages, 26 figure

    Protecting a Graph with Mobile Guards

    Full text link
    Mobile guards on the vertices of a graph are used to defend it against attacks on either its vertices or its edges. Various models for this problem have been proposed. In this survey we describe a number of these models with particular attention to the case when the attack sequence is infinitely long and the guards must induce some particular configuration before each attack, such as a dominating set or a vertex cover. Results from the literature concerning the number of guards needed to successfully defend a graph in each of these problems are surveyed.Comment: 29 pages, two figures, surve

    Guarding curvilinear art galleries with edge or mobile guards via 2-dominance of triangulation graphs

    Get PDF
    AbstractIn this paper we consider the problem of monitoring an art gallery modeled as a polygon, the edges of which are arcs of curves, with edge or mobile guards. Our focus is on piecewise-convex polygons, i.e., polygons that are locally convex, except possibly at the vertices, and their edges are convex arcs.We transform the problem of monitoring a piecewise-convex polygon to the problem of 2-dominating a properly defined triangulation graph with edges or diagonals, where 2-dominance requires that every triangle in the triangulation graph has at least two of its vertices in its 2-dominating set. We show that: (1) ⌊n+13⌋ diagonal guards are always sufficient and sometimes necessary, and (2) ⌊2n+15⌋ edge guards are always sufficient and sometimes necessary, in order to 2-dominate a triangulation graph. Furthermore, we show how to compute: (1) a diagonal 2-dominating set of size ⌊n+13⌋ in linear time and space, (2) an edge 2-dominating set of size ⌊2n+15⌋ in O(n2) time and O(n) space, and (3) an edge 2-dominating set of size ⌊3n7⌋ in O(n) time and space.Based on the above-mentioned results, we prove that, for piecewise-convex polygons, we can compute: (1) a mobile guard set of size ⌊n+13⌋ in O(nlogn) time, (2) an edge guard set of size ⌊2n+15⌋ in O(n2) time, and (3) an edge guard set of size ⌊3n7⌋ in O(nlogn) time. All space requirements are linear. Finally, we show that ⌊n3⌋ mobile or ⌈n3⌉ edge guards are sometimes necessary.When restricting our attention to monotone piecewise-convex polygons, the bounds mentioned above drop: ⌈n+14⌉ edge or mobile guards are always sufficient and sometimes necessary; such an edge or mobile guard set, of size at most ⌈n+14⌉, can be computed in O(n) time and space

    Guarding and Searching Polyhedra

    Get PDF
    Guarding and searching problems have been of fundamental interest since the early years of Computational Geometry. Both are well-developed areas of research and have been thoroughly studied in planar polygonal settings. In this thesis we tackle the Art Gallery Problem and the Searchlight Scheduling Problem in 3-dimensional polyhedral environments, putting special emphasis on edge guards and orthogonal polyhedra. We solve the Art Gallery Problem with reflex edge guards in orthogonal polyhedra having reflex edges in just two directions: generalizing a classic theorem by O'Rourke, we prove that r/2 + 1 reflex edge guards are sufficient and occasionally necessary, where r is the number of reflex edges. We also show how to compute guard locations in O(n log n) time. Then we investigate the Art Gallery Problem with mutually parallel edge guards in orthogonal polyhedra with e edges, showing that 11e/72 edge guards are always sufficient and can be found in linear time, improving upon the previous state of the art, which was e/6. We also give tight inequalities relating e with the number of reflex edges r, obtaining an upper bound on the guard number of 7r/12 + 1. We further study the Art Gallery Problem with edge guards in polyhedra having faces oriented in just four directions, obtaining a lower bound of e/6 - 1 edge guards and an upper bound of (e+r)/6 edge guards. All the previously mentioned results hold for polyhedra of any genus. Additionally, several guard types and guarding modes are discussed, namely open and closed edge guards, and orthogonal and non-orthogonal guarding. Next, we model the Searchlight Scheduling Problem, the problem of searching a given polyhedron by suitably turning some half-planes around their axes, in order to catch an evasive intruder. After discussing several generalizations of classic theorems, we study the problem of efficiently placing guards in a given polyhedron, in order to make it searchable. For general polyhedra, we give an upper bound of r^2 on the number of guards, which reduces to r for orthogonal polyhedra. Then we prove that it is strongly NP-hard to decide if a given polyhedron is entirely searchable by a given set of guards. We further prove that, even under the assumption that an orthogonal polyhedron is searchable, approximating the minimum search time within a small-enough constant factor to the optimum is still strongly NP-hard. Finally, we show that deciding if a specific region of an orthogonal polyhedron is searchable is strongly PSPACE-hard. By further improving our construction, we show that the same problem is strongly PSPACE-complete even for planar orthogonal polygons. Our last results are especially meaningful because no similar hardness theorems for 2-dimensional scenarios were previously known

    Spy-Game on Graphs

    Get PDF
    We define and study the following two-player game on a graph G. Let k in N^*. A set of k guards is occupying some vertices of G while one spy is standing at some node. At each turn, first the spy may move along at most s edges, where s in N^* is his speed. Then, each guard may move along one edge. The spy and the guards may occupy same vertices. The spy has to escape the surveillance of the guards, i.e., must reach a vertex at distance more than d in N (a predefined distance) from every guard. Can the spy win against k guards? Similarly, what is the minimum distance d such that k guards may ensure that at least one of them remains at distance at most d from the spy? This game generalizes two well-studied games: Cops and robber games (when s=1) and Eternal Dominating Set (when s is unbounded). We consider the computational complexity of the problem, showing that it is NP-hard and that it is PSPACE-hard in DAGs. Then, we establish tight tradeoffs between the number of guards and the required distance d when G is a path or a cycle. Our main result is that there exists beta>0 such that Omega(n^{1+beta}) guards are required to win in any n*n grid

    Visibility Extension via Reflection

    Full text link
    This paper studies a variant of the Art Gallery problem in which the "walls" can be replaced by \emph{reflecting-edges}, which allows the guard to see further and thereby see a larger portion of the gallery. We study visibility with specular and diffuse reflections. The number of times a ray can be reflected can be taken as a parameter. The Art Gallery problem has two primary versions: point guarding and vertex guarding. Both versions are proven to be NP-hard by Lee and Aggarwal. We show that several cases of the generalized problem are NP-hard, too. We managed to do this by reducing the 3-SAT and the Subset-Sum problems to the various cases of the generalized problem. We also illustrate that if P\cal P is a funnel or a weak visibility polygon, the problem becomes more straightforward and can be solved in polynomial time. We generalize the O(logn)\mathcal{O}(\log n)-approximation ratio algorithm of the vertex guarding problem to work in the presence of reflection. For a bounded rr, the generalization gives a polynomial-time algorithm with O(logn)\mathcal{O}(\log n)-approximation ratio for several special cases of the generalized problem. Furthermore, Chao Xu proved that although reflection helps the visibility of guards to be expanded, similar to the normal guarding problem, even considering rr specular reflections we may need n3\lfloor \frac{n}{3} \rfloor guards to cover a simple polygon P\cal P. In this article, we prove that considering rr diffuse reflections the minimum number of vertex or boundary guards required to cover P\cal P decreases to α1+r4\lceil \frac{\alpha}{1+ \lfloor \frac{r}{4} \rfloor} \rceil, where α\alpha indicates the minimum number of guards required to cover P\cal P without reflection. funnel or a weak visibility polygon, then the problem becomes more straightforward and can be solved in polynomial time.Comment: 32 pages, 10 figure
    corecore