555 research outputs found

    Semantic Retrieval and Automatic Annotation: Linear Transformations, Correlation and Semantic Spaces

    No full text
    This paper proposes a new technique for auto-annotation and semantic retrieval based upon the idea of linearly mapping an image feature space to a keyword space. The new technique is compared to several related techniques, and a number of salient points about each of the techniques are discussed and contrasted. The paper also discusses how these techniques might actually scale to a real-world retrieval problem, and demonstrates this though a case study of a semantic retrieval technique being used on a real-world data-set (with a mix of annotated and unannotated images) from a picture library

    Giving order to image queries

    No full text
    Users of image retrieval systems often find it frustrating that the image they are looking for is not ranked near the top of the results they are presented. This paper presents a computational approach for ranking keyworded images in order of relevance to a given keyword. Our approach uses machine learning to attempt to learn what visual features within an image are most related to the keywords, and then provide ranking based on similarity to a visual aggregate. To evaluate the technique, a Web 2.0 application has been developed to obtain a corpus of user-generated ranking information for a given image collection that can be used to evaluate the performance of the ranking algorithm

    Semantic spaces revisited: investigating the performance of auto-annotation and semantic retrieval using semantic spaces

    No full text
    Semantic spaces encode similarity relationships between objects as a function of position in a mathematical space. This paper discusses three different formulations for building semantic spaces which allow the automatic-annotation and semantic retrieval of images. The models discussed in this paper require that the image content be described in the form of a series of visual-terms, rather than as a continuous feature-vector. The paper also discusses how these term-based models compare to the latest state-of-the-art continuous feature models for auto-annotation and retrieval

    Exhaustive and Efficient Constraint Propagation: A Semi-Supervised Learning Perspective and Its Applications

    Full text link
    This paper presents a novel pairwise constraint propagation approach by decomposing the challenging constraint propagation problem into a set of independent semi-supervised learning subproblems which can be solved in quadratic time using label propagation based on k-nearest neighbor graphs. Considering that this time cost is proportional to the number of all possible pairwise constraints, our approach actually provides an efficient solution for exhaustively propagating pairwise constraints throughout the entire dataset. The resulting exhaustive set of propagated pairwise constraints are further used to adjust the similarity matrix for constrained spectral clustering. Other than the traditional constraint propagation on single-source data, our approach is also extended to more challenging constraint propagation on multi-source data where each pairwise constraint is defined over a pair of data points from different sources. This multi-source constraint propagation has an important application to cross-modal multimedia retrieval. Extensive results have shown the superior performance of our approach.Comment: The short version of this paper appears as oral paper in ECCV 201

    Adaptive image retrieval using a graph model for semantic feature integration

    Get PDF
    The variety of features available to represent multimedia data constitutes a rich pool of information. However, the plethora of data poses a challenge in terms of feature selection and integration for effective retrieval. Moreover, to further improve effectiveness, the retrieval model should ideally incorporate context-dependent feature representations to allow for retrieval on a higher semantic level. In this paper we present a retrieval model and learning framework for the purpose of interactive information retrieval. We describe how semantic relations between multimedia objects based on user interaction can be learnt and then integrated with visual and textual features into a unified framework. The framework models both feature similarities and semantic relations in a single graph. Querying in this model is implemented using the theory of random walks. In addition, we present ideas to implement short-term learning from relevance feedback. Systematic experimental results validate the effectiveness of the proposed approach for image retrieval. However, the model is not restricted to the image domain and could easily be employed for retrieving multimedia data (and even a combination of different domains, eg images, audio and text documents)

    Can a workspace help to overcome the query formulation problem in image retrieval?

    Get PDF
    We have proposed a novel image retrieval system that incorporates a workspace where users can organise their search results. A task-oriented and user-centred experiment has been devised involving design professionals and several types of realistic search tasks. We study the workspace’s effect on two aspects: task conceptualisation and query formulation. A traditional relevance feedback system serves as baseline. The results of this study show that the workspace is more useful with respect to both of the above aspects. The proposed approach leads to a more effective and enjoyable search experience
    corecore