153,185 research outputs found

    Advanced control concepts

    Get PDF
    The selection of a trim solution that provides the space shuttle with the highest level of performance and dynamic control in the presense of wind disturbances and bias torques due to misalignment of rocket engines is described. It was determined that engine gimballing is insufficient to provide control to trim the vehicle for headwind and sidewind disturbances, and that it is necessary to use aerodynamic surfaces in conjunction with engine gimballing to achieve trim. The algebraic equations for computing the trim solution were derived from the differential equations describing the motion of the vehicle by substituting the desired trim conditions. The general problem of showing how the trim equations are derived from the equations of motion and the mathematical forms of the performance criterion is discussed in detail, along with the general equations for studying the dynamic response of the trim solution

    Advanced control concepts

    Get PDF
    The problems of excess control devices and insufficient trim control capability on shuttle ascent vehicles were investigated. The trim problem is solved at all time points of interest using Lagrangian multipliers and a Simplex based iterative algorithm developed as a result of the study. This algorithm has the capability to solve any bounded linear problem with physically realizable constraints, and to minimize any piecewise differentiable cost function. Both solution methods also automatically distribute the command torques to the control devices. It is shown that trim requirements are unrealizable if only the orbiter engines and the aerodynamic surfaces are used

    Thecomposition of semi finished inventories at a solid board plant

    Get PDF
    A solid board factory produces rectangular sheets of cardboard in two different formats, namely large formats and small formats. The production process consists of two stages separated by an inventory point. In the first stage a cardboard machine produces the large formats. In the second stage a part of the large formats is cut into small formats by a separate rotary cut machine. Due to very large setup times, technical restrictions, and trim losses, the cardboard machine is not able to produce these small formats. The company follows two policies to satisfy customer demands for rotary cut format orders. When the company applies the first policy, then for each customer order an ‘optimal’ large format (with respect to trim loss) is determined and produced on the cardboard machine. In case of the second policy, a stock of a restricted number of large formats is determined in such a way that the expected trim loss is minimal. The rotary cut format order then uses the most suitable standard large format from the stock. Currently, the dimensions of the standard large formats in the semi finished inventory are based on intuitive motives, with an accent on minimizing trim losses. From the trim loss perspective it is most efficient to produce each rotary cut format from a specific large format. On the other hand, if there is only one large format in each caliper, the variety is minimal, but the trim loss might be inacceptably high. On average, the first policy results in a lower trim loss. In order to make efficiently use of the two machines and to meet customer’s due times the company applies both policies. In this paper we concentrate on the second policy, taking into account the various objectives and restrictions of the company. The purpose of the company is to have not too many different types of large formats and an acceptable amount of trim loss. The problem is formulated as a minimum clique covering problem with alternatives (MCCA), which is presumed to be NP-hard. We solve the problem by using an appropriate heuristic, which is built into a decision support system. Based on a set of real data, the actual composition of semi finished inventories is determined. The paper concludes with computational experiments.

    The two-dimensional cutting stock problem within the roller blind production process

    Get PDF
    In this paper we consider a two-dimensional cutting stock problem encountered at a large manufacturer of window covering products. The problem occurs in the production process of made-to-measure roller blinds. We develop a solution method that takes into account the characteristics of the specific problem. In particular, we deal with the fact that fabrics may contain small defects that should end up with the waste. Comparison to previous practice shows significant waste reductions.cutting;trim loss;two-dimensional cutting stock problem

    Some comments on trim drag

    Get PDF
    A discussion of data of and methods for predicting trim drag is presented. Specifically the following subjects are discussed: (1) economic impact of trim drag; (2) the trim drag problem in propeller driven airplanes and the effect of propeller and nacelle location; (3) theoretical procedures for predicting trim drag; and (4) research needs in the area of trim drag

    A General Solution to the Aircraft Trim Problem

    Get PDF
    Trim defines conditions for both design and analysis based on aircraft models. In fact, we often define these analysis points more broadly than the conditions normally associated with trim conditions to facilitate that analysis or design. In simulations, these analysis points establish initial conditions comparable to flight conditions. Based on aerodynamic and propulsion systems models of an aircraft, trim analysis can be used to provide the data needed to define the operating envelope or the performance characteristics. Linear models are typically derived at trim points. Control systems are designed and evaluated at points defined by trim conditions. And these trim conditions provide us a starting point for comparing one model against another, one implementation of a model against another implementation of the same model, and the model to flight-derived data. In this paper we define what we mean by trim, examine a variety of trim conditions that have proved useful and derive the equations defining those trim conditions. Finally we present a general approach to trim through constrained minimization of a cost function based on the nonlinear, six-degree-of freedom state equations coupled with the aerodynamic and propulsion system models. We provide an example of how a trim algorithm is used with a simulation by showing an example from JSBSim

    Rotor Dynamic State and Parameter Identification from Hovering Transients

    Get PDF
    State and parameter identifications based on a form of the maximum likelihood method are applied to the problem of extracting linear perturbation models, including rotor dynamic inflow effects, from transient blade flapping measurements. The estimation method is first studied in computer simulations and then applied to cyclic pitch stirring transients generated with a four-bladed rotor model operating in hovering trim conditions. The analytical perturbation models extracted from the transient test results are compared with transient and frequency response tests not used in the state and parameter identification. The identified analytical perturbation model is also compared with a simple theory. The method that is applicable both to small scale and full scale dynamic rotor testing is being extended to perturbations from forward flight trim conditions

    Integrated flight/propulsion control design for a STOVL aircraft using H-infinity control design techniques

    Get PDF
    Results are presented from an application of H-infinity control design methodology to a centralized integrated flight propulsion control (IFPC) system design for a supersonic Short Takeoff and Vertical Landing (STOVL) fighter aircraft in transition flight. The emphasis is on formulating the H-infinity control design problem such that the resulting controller provides robustness to modeling uncertainties and model parameter variations with flight condition. Experience gained from a preliminary H-infinity based IFPC design study performed earlier is used as the basis to formulate the robust H-infinity control design problem and improve upon the previous design. Detailed evaluation results are presented for a reduced order controller obtained from the improved H-infinity control design showing that the control design meets the specified nominal performance objectives as well as provides stability robustness for variations in plant system dynamics with changes in aircraft trim speed within the transition flight envelope. A controller scheduling technique which accounts for changes in plant control effectiveness with variation in trim conditions is developed and off design model performance results are presented
    corecore