33 research outputs found

    A Comparison of Two Different Methods for Solving Biharmonic Boundary Valve Problems

    Get PDF
    We use the methods of compactly supported radial basis functions (CS-RBFs) and Delta-shaped basis functions (DBFs) to obtain the numerical solution of a two-dimensional biharmonic boundary value problem. The biharmonic equation is difficult to solve due to its existing fourth order derivatives, besides it requires more than one boundary conditions on the same part of the boundary. In this thesis, we use either a one-level or a two-level technique for constructing the approximate solution in the context of Kansa’s collocation method. This thesis will compare the accuracy of the methods of CS-RBFs and DBFs when applied to the biharmonic boundary value problem. Both methods can be used on an irregular shaped domain. Numerical results show that the DBF approach is superior than that of the CS-RBF

    Solution for a problem of linear plane elasticity with mixed boundary conditions on an ellipse by the method of boundary integrals

    Get PDF
    AbstractA numerical boundary integral scheme is proposed for the solution of the system of field equations of plane, linear elasticity in stresses for homogeneous, isotropic media in the domain bounded by an ellipse under mixed boundary conditions. The stresses are prescribed on one half of the ellipse, while the displacements are given on the other half. The method relies on previous analytical work within the Boundary Integral Method [1,2].The considered problem with mixed boundary conditions is replaced by two subproblems with homogeneous boundary conditions, one of each type, having a common solution. The equations are reduced to a system of boundary integral equations, which is then discretized in the usual way and the problem at this stage is reduced to the solution of a rectangular linear system of algebraic equations. The unknowns in this system of equations are the boundary values of four harmonic functions which define the full elastic solution inside the domain, and the unknown boundary values of stresses or displacements on proper parts of the boundary.On the basis of the obtained results, it is inferred that the tangential stress component on the fixed part of the boundary has a singularity at each of the two separation points, thought to be of logarithmic type. A tentative form for the singular solution is proposed to calculate the full solution in bulk directly from the given boundary conditions using the well-known Boundary Collocation Method. It is shown that this addition substantially decreases the error in satisfying the boundary conditions on some interval not containing the singular points.The obtained results are discussed and boundary curves for unknown functions are provided, as well as three-dimensional plots for quantities of practical interest. The efficiency of the used numerical schemes is discussed, in what concerns the number of boundary nodes needed to calculate the approximate solution

    A unified framework for multiscale spectral generalized FEMs and low-rank approximations to multiscale PDEs

    Full text link
    This work presents an abstract framework for the design, implementation, and analysis of the multiscale spectral generalized finite element method (MS-GFEM), a particular numerical multiscale method originally proposed in [I. Babuska and R. Lipton, Multiscale Model.\;\,Simul., 9 (2011), pp.~373--406]. MS-GFEM is a partition of unity method employing optimal local approximation spaces constructed from local spectral problems. We establish a general local approximation theory demonstrating exponential convergence with respect to local degrees of freedom under certain assumptions, with explicit dependence on key problem parameters. Our framework applies to a broad class of multiscale PDEs with LL^{\infty}-coefficients in both continuous and discrete, finite element settings, including highly indefinite problems (convection-dominated diffusion, as well as the high-frequency Helmholtz, Maxwell and elastic wave equations with impedance boundary conditions), and higher-order problems. Notably, we prove a local convergence rate of O(ecn1/d)O(e^{-cn^{1/d}}) for MS-GFEM for all these problems, improving upon the O(ecn1/(d+1))O(e^{-cn^{1/(d+1)}}) rate shown by Babuska and Lipton. Moreover, based on the abstract local approximation theory for MS-GFEM, we establish a unified framework for showing low-rank approximations to multiscale PDEs. This framework applies to the aforementioned problems, proving that the associated Green's functions admit an O(logϵd)O(|\log\epsilon|^{d})-term separable approximation on well-separated domains with error ϵ>0\epsilon>0. Our analysis improves and generalizes the result in [M. Bebendorf and W. Hackbusch, Numerische Mathematik, 95 (2003), pp.~1-28] where an O(logϵd+1)O(|\log\epsilon|^{d+1})-term separable approximation was proved for Poisson-type problems
    corecore