25 research outputs found

    New special cases of the quadratic assignment problem with diagonally structured coefficient matrices

    Get PDF
    We consider new polynomially solvable cases of the well-known Quadratic Assignment Problem involving coefficient matrices with a special diagonal structure. By combining the new special cases with polynomially solvable special cases known in the literature we obtain a new and larger class of polynomially solvable special cases of the QAP where one of the two coefficient matrices involved is a Robinson matrix with an additional structural property: this matrix can be represented as a conic combination of cut matrices in a certain normal form. The other matrix is a conic combination of a monotone anti-Monge matrix and a down-benevolent Toeplitz matrix. We consider the recognition problem for the special class of Robinson matrices mentioned above and show that it can be solved in polynomial time

    Travelling salesman paths on Demidenko matrices

    Get PDF
    In the path version of the Travelling Salesman Problem (Path-TSP), a salesman is looking for the shortest Hamiltonian path through a set of n cities. The salesman has to start his journey at a given city s, visit every city exactly once, and finally end his trip at another given city t. In this paper we show that a special case of the Path-TSP with a Demidenko distance matrix is solvable in polynomial time. Demidenko distance matrices fulfill a particular condition abstracted from the convex Euclidian special case by Demidenko (1979) as an extension of an earlier work of Kalmanson (1975). We identify a number of crucial combinatorial properties of the optimal solution and design a dynamic programming approach with time complexity O(n6)

    Exact and Heuristic Algorithms for Routing AGV on Path with Precedence Constraints

    Get PDF
    A new problem arises when an automated guided vehicle (AGV) is dispatched to visit a set of customers, which are usually located along a fixed wire transmitting signal to navigate the AGV. An optimal visiting sequence is desired with the objective of minimizing the total travelling distance (or time). When precedence constraints are restricted on customers, the problem is referred to as traveling salesman problem on path with precedence constraints (TSPP-PC). Whether or not it is NP-complete has no answer in the literature. In this paper, we design dynamic programming for the TSPP-PC, which is the first polynomial-time exact algorithm when the number of precedence constraints is a constant. For the problem with number of precedence constraints, part of the input can be arbitrarily large, so we provide an efficient heuristic based on the exact algorithm

    The multi-stripe travelling salesman problem

    Get PDF
    In the classical Travelling Salesman Problem (TSP), the objective function sums the costs for travelling from one city to the next city along the tour. In the q-stripe TSP with q ≥ 1, the objective function sums the costs for travelling from one city to each of the next q cities along the tour. The resulting q-stripe TSP generalizes the TSP and forms a special case of the quadratic assignment problem. We analyze the computational complexity of the q-stripe TSP for various classes of specially structured distance matrices. We derive NP-hardness results as well as polyomially solvable cases. One of our main results generalizes a well-known theorem of Kalmanson from the classical TSP to the q-stripe TSP

    Heuristic Solution Approaches to the Solid Assignment Problem

    Get PDF
    The 3-dimensional assignment problem, also known as the Solid Assignment Problem (SAP), is a challenging problem in combinatorial optimisation. While the ordinary or 2-dimensional assignment problem is in the P-class, SAP which is an extension of it, is NP-hard. SAP is the problem of allocating n jobs to n machines in n factories such that exactly one job is allocated to one machine in one factory. The objective is to minimise the total cost of getting these n jobs done. The problem is commonly solved using exact methods of integer programming such as Branch-and-Bound B&B. As it is intractable, only approximate solutions are found in reasonable time for large instances. Here, we suggest a number of approximate solution approaches, one of them the Diagonals Method (DM), relies on the Kuhn-Tucker Munkres algorithm, also known as the Hungarian Assignment Method. The approach was discussed, hybridised, presented and compared with other heuristic approaches such as the Average Method, the Addition Method, the Multiplication Method and the Genetic Algorithm. Moreover, a special case of SAP which involves Monge-type matrices is also considered. We have shown that in this case DM finds the exact solution efficiently. We sought to provide illustrations of the models and approaches presented whenever appropriate. Extensive experimental results are included and discussed. The thesis ends with a conclusions and some suggestions for further work on the same and related topics

    TSP and its variants : use of solvable cases in heuristics

    Get PDF
    This thesis proposes heuristics motivated by solvable cases for the travelling salesman problem (TSP) and the cumulative travelling salesman path problem (CTSPP). The solvable cases are investigated in three aspects: specially structured matrices, special neighbourhoods and small-size problems. This thesis demonstrates how to use solvable cases in heuristics for the TSP and the CTSPP and presents their promising performance in theoretical research and empirical research. Firstly, we prove that the three classical heuristics, nearest neighbour, double-ended nearest neighbour and GREEDY, have the theoretical property of obtaining the permutation for permuted strong anti-Robinson matrices for the TSP such that the renumbered matrices satisfy the anti-Robinson conditions. Inspired by specially structured matrices, we propose Kalmanson heuristics, which not only have the theoretical property of solving permuted strong Kalmanson matrices to optimality for the TSP, but also outperform their classical counterparts for general cases. Secondly, we propose three heuristics for the CTSPP. The pyramidal heuristic is motivated by the special pyramidal neighbourhood. The chains heuristic and the sliding window heuristic are motivated by solvable small-size problems. The experiments suggest the proposed heuristics outperform the classical GRASP-2-opt on general cases for the CTSPP. Thirdly, we conduct both theoretical and empirical research on specially structured cases for the CTSPP. Theoretically, we prove the solvability of Line- CTSPP on more general cases and the time complexity of the CTSPP on SUM matrices. We also conjecture that the CTSPP on two rays is NP-hard. Empirically, we propose three heuristics, which perform well on specially structured cases. The Line heuristic, based on Line-CTSPP, performs better than GRASP-2-opt when nodes are distributed on two close parallel lines. The Up-Down heuristic is inspired by the Up-Down structure in solvable Path TSP and outperforms GRASP-2-opt in convex-hull cases and close-to-convex-hull cases. The Two-Ray heuristic combines the path structures in the first two heuristics and obtains high-quality solutions when nodes are along two rays

    Scheduling Models with Additional Features: Synchronization, Pliability and Resiliency

    Get PDF
    In this thesis we study three new extensions of scheduling models with both practical and theoretical relevance, namely synchronization, pliability and resiliency. Synchronization has previously been studied for flow shop scheduling and we now apply the concept to open shop models for the first time. Here, as opposed to the traditional models, operations that are processed together all have to be started at the same time. Operations that are completed are not removed from the machines until the longest operation in their group is finished. Pliability is a new approach to model flexibility in flow shops and open shops. In scheduling with pliability, parts of the processing load of the jobs can be re-distributed between the machines in order to achieve better schedules. This is applicable, for example, if the machines represent cross-trained workers. Resiliency is a new measure for the quality of a given solution if the input data are uncertain. A resilient solution remains better than some given bound, even if the original input data are changed. The more we can perturb the input data without the solution losing too much quality, the more resilient the solution is. We also consider the assignment problem, as it is the traditional combinatorial optimization problem underlying many scheduling problems. Particularly, we study a version of the assignment problem with a special cost structure derived from the synchronous open shop model and obtain new structural and complexity results. Furthermore we study resiliency for the assignment problem. The main focus of this thesis is the study of structural properties, algorithm development and complexity. For synchronous open shop we show that for a fixed number of machines the makespan can be minimized in polynomial time. All other traditional scheduling objectives are at least as hard to optimize as in the traditional open shop model. Starting out research in pliability we focus on the most general case of the model as well as two relevant special cases. We deliver a fairly complete complexity study for all three versions of the model. Finally, for resiliency, we investigate two different questions: `how to compute the resiliency of a given solution?' and `how to find a most resilient solution?'. We focus on the assignment problem and single machine scheduling to minimize the total sum of completion times and present a number of positive results for both questions. The main goal is to make a case that the concept deserves further study
    corecore