2,440 research outputs found

    THE TRAVELING SALESMAN PROBLEM FOR LINES AND RAYS IN THE PLANE

    Full text link

    Quasi-Parallel Segments and Characterization of Unique Bichromatic Matchings

    Full text link
    Given n red and n blue points in general position in the plane, it is well-known that there is a perfect matching formed by non-crossing line segments. We characterize the bichromatic point sets which admit exactly one non-crossing matching. We give several geometric descriptions of such sets, and find an O(nlogn) algorithm that checks whether a given bichromatic set has this property.Comment: 31 pages, 24 figure

    Euclidean TSP with few inner points in linear space

    Full text link
    Given a set of nn points in the Euclidean plane, such that just kk points are strictly inside the convex hull of the whole set, we want to find the shortest tour visiting every point. The fastest known algorithm for the version when kk is significantly smaller than nn, i.e., when there are just few inner points, works in O(k11kk1.5n3)O(k^{11\sqrt{k}} k^{1.5} n^{3}) time [Knauer and Spillner, WG 2006], but also requires space of order kckn2k^{c\sqrt{k}}n^{2}. The best linear space algorithm takes O(k!kn)O(k! k n) time [Deineko, Hoffmann, Okamoto, Woeginer, Oper. Res. Lett. 34(1), 106-110]. We construct a linear space O(nk2+kO(k))O(nk^2+k^{O(\sqrt{k})}) time algorithm. The new insight is extending the known divide-and-conquer method based on planar separators with a matching-based argument to shrink the instance in every recursive call. This argument also shows that the problem admits a quadratic bikernel.Comment: under submissio

    FC-Planner: A Skeleton-guided Planning Framework for Fast Aerial Coverage of Complex 3D Scenes

    Full text link
    3D coverage path planning for UAVs is a crucial problem in diverse practical applications. However, existing methods have shown unsatisfactory system simplicity, computation efficiency, and path quality in large and complex scenes. To address these challenges, we propose FC-Planner, a skeleton-guided planning framework that can achieve fast aerial coverage of complex 3D scenes without pre-processing. We decompose the scene into several simple subspaces by a skeleton-based space decomposition (SSD). Additionally, the skeleton guides us to effortlessly determine free space. We utilize the skeleton to efficiently generate a minimal set of specialized and informative viewpoints for complete coverage. Based on SSD, a hierarchical planner effectively divides the large planning problem into independent sub-problems, enabling parallel planning for each subspace. The carefully designed global and local planning strategies are then incorporated to guarantee both high quality and efficiency in path generation. We conduct extensive benchmark and real-world tests, where FC-Planner computes over 10 times faster compared to state-of-the-art methods with shorter path and more complete coverage. The source code will be open at https://github.com/HKUST-Aerial-Robotics/FC-Planner.Comment: Submitted to ICRA2024. 6 Pages, 6 Figures, 3 Tables. Code: https://github.com/HKUST-Aerial-Robotics/FC-Planner. Video: https://www.bilibili.com/video/BV1h84y1D7u5/?spm_id_from=333.999.0.0&vd_source=0af61c122e5e37c944053b57e313025

    The traveling salesman problem for lines, balls and planes

    Full text link
    We revisit the traveling salesman problem with neighborhoods (TSPN) and propose several new approximation algorithms. These constitute either first approximations (for hyperplanes, lines, and balls in Rd\mathbb{R}^d, for d3d\geq 3) or improvements over previous approximations achievable in comparable times (for unit disks in the plane). \smallskip (I) Given a set of nn hyperplanes in Rd\mathbb{R}^d, a TSP tour whose length is at most O(1)O(1) times the optimal can be computed in O(n)O(n) time, when dd is constant. \smallskip (II) Given a set of nn lines in Rd\mathbb{R}^d, a TSP tour whose length is at most O(log3n)O(\log^3 n) times the optimal can be computed in polynomial time for all dd. \smallskip (III) Given a set of nn unit balls in Rd\mathbb{R}^d, a TSP tour whose length is at most O(1)O(1) times the optimal can be computed in polynomial time, when dd is constant.Comment: 30 pages, 9 figures; final version to appear in ACM Transactions on Algorithm

    A PTAS for Euclidean TSP with Hyperplane Neighborhoods

    Full text link
    In the Traveling Salesperson Problem with Neighborhoods (TSPN), we are given a collection of geometric regions in some space. The goal is to output a tour of minimum length that visits at least one point in each region. Even in the Euclidean plane, TSPN is known to be APX-hard, which gives rise to studying more tractable special cases of the problem. In this paper, we focus on the fundamental special case of regions that are hyperplanes in the dd-dimensional Euclidean space. This case contrasts the much-better understood case of so-called fat regions. While for d=2d=2 an exact algorithm with running time O(n5)O(n^5) is known, settling the exact approximability of the problem for d=3d=3 has been repeatedly posed as an open question. To date, only an approximation algorithm with guarantee exponential in dd is known, and NP-hardness remains open. For arbitrary fixed dd, we develop a Polynomial Time Approximation Scheme (PTAS) that works for both the tour and path version of the problem. Our algorithm is based on approximating the convex hull of the optimal tour by a convex polytope of bounded complexity. Such polytopes are represented as solutions of a sophisticated LP formulation, which we combine with the enumeration of crucial properties of the tour. As the approximation guarantee approaches 11, our scheme adjusts the complexity of the considered polytopes accordingly. In the analysis of our approximation scheme, we show that our search space includes a sufficiently good approximation of the optimum. To do so, we develop a novel and general sparsification technique to transform an arbitrary convex polytope into one with a constant number of vertices and, in turn, into one of bounded complexity in the above sense. Hereby, we maintain important properties of the polytope
    corecore