75,891 research outputs found

    The Transactional Conflict Problem

    Full text link
    The transactional conflict problem arises in transactional systems whenever two or more concurrent transactions clash on a data item. While the standard solution to such conflicts is to immediately abort one of the transactions, some practical systems consider the alternative of delaying conflict resolution for a short interval, which may allow one of the transactions to commit. The challenge in the transactional conflict problem is to choose the optimal length of this delay interval so as to minimize the overall running time penalty for the conflicting transactions. In this paper, we propose a family of optimal online algorithms for the transactional conflict problem. Specifically, we consider variants of this problem which arise in different implementations of transactional systems, namely "requestor wins" and "requestor aborts" implementations: in the former, the recipient of a coherence request is aborted, whereas in the latter, it is the requestor which has to abort. Both strategies are implemented by real systems. We show that the requestor aborts case can be reduced to a classic instance of the ski rental problem, while the requestor wins case leads to a new version of this classical problem, for which we derive optimal deterministic and randomized algorithms. Moreover, we prove that, under a simplified adversarial model, our algorithms are constant-competitive with the offline optimum in terms of throughput. We validate our algorithmic results empirically through a hardware simulation of hardware transactional memory (HTM), showing that our algorithms can lead to non-trivial performance improvements for classic concurrent data structures

    The Effect of Using Problem-based Group Discussion Technique to Improve Transactional Speaking Skills of Second Grade Students at Vocational High School 5 Gowa

    Get PDF
    The results of this study indicate two things namely the first; Problem-based group discussion techniques can improve students' transactional speaking skills. That is evidenced by the results of the statistical analysis of the significance level of P = 0.05 with degrees of freedom (df) = 9 indicating that the t-test scores of students' speaking skills (3,498) are higher than the values of t-tables. (2,262). Second; there are seven factors that affect the improvement of students' transactional speaking skills, namely cohesiveness, suitability, roles, goals, charismatic leadership, inspiration and competition & conflict. The outcome of this research is to help the students improving their transactional speaking skills in exchanging information, taking a part in formal discussions or having a good presentation and even learning to work in real-life situations by using problem-based group discussion techniques. Therefore, the teachers will be able to use a new teaching technique that is good and they may leave the old technique because the school has been applied 2013 curriculum

    HeTM: Transactional Memory for Heterogeneous Systems

    Full text link
    Modern heterogeneous computing architectures, which couple multi-core CPUs with discrete many-core GPUs (or other specialized hardware accelerators), enable unprecedented peak performance and energy efficiency levels. Unfortunately, though, developing applications that can take full advantage of the potential of heterogeneous systems is a notoriously hard task. This work takes a step towards reducing the complexity of programming heterogeneous systems by introducing the abstraction of Heterogeneous Transactional Memory (HeTM). HeTM provides programmers with the illusion of a single memory region, shared among the CPUs and the (discrete) GPU(s) of a heterogeneous system, with support for atomic transactions. Besides introducing the abstract semantics and programming model of HeTM, we present the design and evaluation of a concrete implementation of the proposed abstraction, which we named Speculative HeTM (SHeTM). SHeTM makes use of a novel design that leverages on speculative techniques and aims at hiding the inherently large communication latency between CPUs and discrete GPUs and at minimizing inter-device synchronization overhead. SHeTM is based on a modular and extensible design that allows for easily integrating alternative TM implementations on the CPU's and GPU's sides, which allows the flexibility to adopt, on either side, the TM implementation (e.g., in hardware or software) that best fits the applications' workload and the architectural characteristics of the processing unit. We demonstrate the efficiency of the SHeTM via an extensive quantitative study based both on synthetic benchmarks and on a porting of a popular object caching system.Comment: The current work was accepted in the 28th International Conference on Parallel Architectures and Compilation Techniques (PACT'19

    Analysis, classification and comparison of scheduling techniques for software transactional memories

    Get PDF
    Transactional Memory (TM) is a practical programming paradigm for developing concurrent applications. Performance is a critical factor for TM implementations, and various studies demonstrated that specialised transaction/thread scheduling support is essential for implementing performance-effective TM systems. After one decade of research, this article reviews the wide variety of scheduling techniques proposed for Software Transactional Memories. Based on peculiarities and differences of the adopted scheduling strategies, we propose a classification of the existing techniques, and we discuss the specific characteristics of each technique. Also, we analyse the results of previous evaluation and comparison studies, and we present the results of a new experimental study encompassing techniques based on different scheduling strategies. Finally, we identify potential strengths and weaknesses of the different techniques, as well as the issues that require to be further investigated

    HaTS: Hardware-Assisted Transaction Scheduler

    Get PDF
    In this paper we present HaTS, a Hardware-assisted Transaction Scheduler. HaTS improves performance of concurrent applications by classifying the executions of their atomic blocks (or in-memory transactions) into scheduling queues, according to their so called conflict indicators. The goal is to group those transactions that are conflicting while letting non-conflicting transactions proceed in parallel. Two core innovations characterize HaTS. First, HaTS does not assume the availability of precise information associated with incoming transactions in order to proceed with the classification. It relaxes this assumption by exploiting the inherent conflict resolution provided by Hardware Transactional Memory (HTM). Second, HaTS dynamically adjusts the number of the scheduling queues in order to capture the actual application contention level. Performance results using the STAMP benchmark suite show up to 2x improvement over state-of-the-art HTM-based scheduling techniques

    Hardware support for Local Memory Transactions on GPU Architectures

    Get PDF
    Graphics Processing Units (GPUs) are popular hardware accelerators for data-parallel applications, enabling the execution of thousands of threads in a Single Instruction - Multiple Thread (SIMT) fashion. However, the SIMT execution model is not efficient when code includes critical sections to protect the access to data shared by the running threads. In addition, GPUs offer two shared spaces to the threads, local memory and global memory. Typical solutions to thread synchronization include the use of atomics to implement locks, the serialization of the execution of the critical section, or delegating the execution of the critical section to the host CPU, leading to suboptimal performance. In the multi-core CPU world, transactional memory (TM) was proposed as an alternative to locks to coordinate concurrent threads. Some solutions for GPUs started to appear in the literature. In contrast to these earlier proposals, our approach is to design hardware support for TM in two levels. The first level is a fast and lightweight solution for coordinating threads that share the local memory, while the second level coordinates threads through the global memory. In this paper we present GPU-LocalTM as a hardware TM (HTM) support for the first level. GPU-LocalTM offers simple conflict detection and version management mechanisms that minimize the hardware resources required for its implementation. For the workloads studied, GPU-LocalTM provides between 1.25-80X speedup over serialized critical sections, while the overhead introduced by transaction management is lower than 20%.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech
    corecore