43 research outputs found

    Gradient-less Federated Gradient Boosting Trees with Learnable Learning Rates

    Full text link
    The privacy-sensitive nature of decentralized datasets and the robustness of eXtreme Gradient Boosting (XGBoost) on tabular data raise the needs to train XGBoost in the context of federated learning (FL). Existing works on federated XGBoost in the horizontal setting rely on the sharing of gradients, which induce per-node level communication frequency and serious privacy concerns. To alleviate these problems, we develop an innovative framework for horizontal federated XGBoost which does not depend on the sharing of gradients and simultaneously boosts privacy and communication efficiency by making the learning rates of the aggregated tree ensembles learnable. We conduct extensive evaluations on various classification and regression datasets, showing our approach achieves performance comparable to the state-of-the-art method and effectively improves communication efficiency by lowering both communication rounds and communication overhead by factors ranging from 25x to 700x.Comment: Accepted at the 3rd ACM Workshop on Machine Learning and Systems (EuroMLSys), May 8th 2023, Rome, Ital

    Machine Learning for Microcontroller-Class Hardware -- A Review

    Full text link
    The advancements in machine learning opened a new opportunity to bring intelligence to the low-end Internet-of-Things nodes such as microcontrollers. Conventional machine learning deployment has high memory and compute footprint hindering their direct deployment on ultra resource-constrained microcontrollers. This paper highlights the unique requirements of enabling onboard machine learning for microcontroller class devices. Researchers use a specialized model development workflow for resource-limited applications to ensure the compute and latency budget is within the device limits while still maintaining the desired performance. We characterize a closed-loop widely applicable workflow of machine learning model development for microcontroller class devices and show that several classes of applications adopt a specific instance of it. We present both qualitative and numerical insights into different stages of model development by showcasing several use cases. Finally, we identify the open research challenges and unsolved questions demanding careful considerations moving forward.Comment: Accepted for publication at IEEE Sensors Journa

    Crossing Roads of Federated Learning and Smart Grids: Overview, Challenges, and Perspectives

    Full text link
    Consumer's privacy is a main concern in Smart Grids (SGs) due to the sensitivity of energy data, particularly when used to train machine learning models for different services. These data-driven models often require huge amounts of data to achieve acceptable performance leading in most cases to risks of privacy leakage. By pushing the training to the edge, Federated Learning (FL) offers a good compromise between privacy preservation and the predictive performance of these models. The current paper presents an overview of FL applications in SGs while discussing their advantages and drawbacks, mainly in load forecasting, electric vehicles, fault diagnoses, load disaggregation and renewable energies. In addition, an analysis of main design trends and possible taxonomies is provided considering data partitioning, the communication topology, and security mechanisms. Towards the end, an overview of main challenges facing this technology and potential future directions is presented

    Landing AI on Networks: An equipment vendor viewpoint on Autonomous Driving Networks

    Full text link
    The tremendous achievements of Artificial Intelligence (AI) in computer vision, natural language processing, games and robotics, has extended the reach of the AI hype to other fields: in telecommunication networks, the long term vision is to let AI fully manage, and autonomously drive, all aspects of network operation. In this industry vision paper, we discuss challenges and opportunities of Autonomous Driving Network (ADN) driven by AI technologies. To understand how AI can be successfully landed in current and future networks, we start by outlining challenges that are specific to the networking domain, putting them in perspective with advances that AI has achieved in other fields. We then present a system view, clarifying how AI can be fitted in the network architecture. We finally discuss current achievements as well as future promises of AI in networks, mentioning a roadmap to avoid bumps in the road that leads to true large-scale deployment of AI technologies in networks
    corecore