313 research outputs found

    The tractability frontier of graph-like first-order query sets

    Get PDF
    We study first-order model checking, by which we refer to the problem of deciding whether or not a given first-order sentence is satisfied by a given finite structure. In particular, we aim to understand on which sets of sentences this problem is tractable, in the sense of parameterized complexity theory. To this end, we define the notion of a graph-like sentence set, which definition is inspired by previous work on first-order model checking wherein the permitted connectives and quantifiers were restricted. Our main theorem is the complete tractability classification of such graphlike sentence sets, which is (to our knowledge) the first complexity classification theorem concerning a class of sentences that has no restriction on the connectives and quantifiers. To present and prove our classification, we introduce and develop a novel complexity-theoretic framework which is built on parameterized complexity and includes new notions of reduction

    Evaluating Datalog via Tree Automata and Cycluits

    Full text link
    We investigate parameterizations of both database instances and queries that make query evaluation fixed-parameter tractable in combined complexity. We show that clique-frontier-guarded Datalog with stratified negation (CFG-Datalog) enjoys bilinear-time evaluation on structures of bounded treewidth for programs of bounded rule size. Such programs capture in particular conjunctive queries with simplicial decompositions of bounded width, guarded negation fragment queries of bounded CQ-rank, or two-way regular path queries. Our result is shown by translating to alternating two-way automata, whose semantics is defined via cyclic provenance circuits (cycluits) that can be tractably evaluated.Comment: 56 pages, 63 references. Journal version of "Combined Tractability of Query Evaluation via Tree Automata and Cycluits (Extended Version)" at arXiv:1612.04203. Up to the stylesheet, page/environment numbering, and possible minor publisher-induced changes, this is the exact content of the journal paper that will appear in Theory of Computing Systems. Update wrt version 1: latest reviewer feedbac

    Tree-like Queries in OWL 2 QL: Succinctness and Complexity Results

    Get PDF
    This paper investigates the impact of query topology on the difficulty of answering conjunctive queries in the presence of OWL 2 QL ontologies. Our first contribution is to clarify the worst-case size of positive existential (PE), non-recursive Datalog (NDL), and first-order (FO) rewritings for various classes of tree-like conjunctive queries, ranging from linear queries to bounded treewidth queries. Perhaps our most surprising result is a superpolynomial lower bound on the size of PE-rewritings that holds already for linear queries and ontologies of depth 2. More positively, we show that polynomial-size NDL-rewritings always exist for tree-shaped queries with a bounded number of leaves (and arbitrary ontologies), and for bounded treewidth queries paired with bounded depth ontologies. For FO-rewritings, we equate the existence of polysize rewritings with well-known problems in Boolean circuit complexity. As our second contribution, we analyze the computational complexity of query answering and establish tractability results (either NL- or LOGCFL-completeness) for a range of query-ontology pairs. Combining our new results with those from the literature yields a complete picture of the succinctness and complexity landscapes for the considered classes of queries and ontologies.Comment: This is an extended version of a paper accepted at LICS'15. It contains both succinctness and complexity results and adopts FOL notation. The appendix contains proofs that had to be omitted from the conference version for lack of space. The previous arxiv version (a long version of our DL'14 workshop paper) only contained the succinctness results and used description logic notatio

    The Vadalog System: Datalog-based Reasoning for Knowledge Graphs

    Full text link
    Over the past years, there has been a resurgence of Datalog-based systems in the database community as well as in industry. In this context, it has been recognized that to handle the complex knowl\-edge-based scenarios encountered today, such as reasoning over large knowledge graphs, Datalog has to be extended with features such as existential quantification. Yet, Datalog-based reasoning in the presence of existential quantification is in general undecidable. Many efforts have been made to define decidable fragments. Warded Datalog+/- is a very promising one, as it captures PTIME complexity while allowing ontological reasoning. Yet so far, no implementation of Warded Datalog+/- was available. In this paper we present the Vadalog system, a Datalog-based system for performing complex logic reasoning tasks, such as those required in advanced knowledge graphs. The Vadalog system is Oxford's contribution to the VADA research programme, a joint effort of the universities of Oxford, Manchester and Edinburgh and around 20 industrial partners. As the main contribution of this paper, we illustrate the first implementation of Warded Datalog+/-, a high-performance Datalog+/- system utilizing an aggressive termination control strategy. We also provide a comprehensive experimental evaluation.Comment: Extended version of VLDB paper <https://doi.org/10.14778/3213880.3213888

    The complexity of acyclic conjunctive queries revisited

    Get PDF
    In this paper, we consider first-order logic over unary functions and study the complexity of the evaluation problem for conjunctive queries described by such kind of formulas. A natural notion of query acyclicity for this language is introduced and we study the complexity of a large number of variants or generalizations of acyclic query problems in that context (Boolean or not Boolean, with or without inequalities, comparisons, etc...). Our main results show that all those problems are \textit{fixed-parameter linear} i.e. they can be evaluated in time f(Q).db.Q(db)f(|Q|).|\textbf{db}|.|Q(\textbf{db})| where Q|Q| is the size of the query QQ, db|\textbf{db}| the database size, Q(db)|Q(\textbf{db})| is the size of the output and ff is some function whose value depends on the specific variant of the query problem (in some cases, ff is the identity function). Our results have two kinds of consequences. First, they can be easily translated in the relational (i.e., classical) setting. Previously known bounds for some query problems are improved and new tractable cases are then exhibited. Among others, as an immediate corollary, we improve a result of \~\cite{PapadimitriouY-99} by showing that any (relational) acyclic conjunctive query with inequalities can be evaluated in time f(Q).db.Q(db)f(|Q|).|\textbf{db}|.|Q(\textbf{db})|. A second consequence of our method is that it provides a very natural descriptive approach to the complexity of well-known algorithmic problems. A number of examples (such as acyclic subgraph problems, multidimensional matching, etc...) are considered for which new insights of their complexity are given.Comment: 30 page
    corecore