2,799 research outputs found

    Translational Oncogenomics and Human Cancer Interactome Networks

    Get PDF
    An overview of translational, human oncogenomics, transcriptomics and cancer interactomic networks is presented together with basic concepts and potential, new applications to Oncology and Integrative Cancer Biology. Novel translational oncogenomics research is rapidly expanding through the application of advanced technology, research findings and computational tools/models to both pharmaceutical and clinical problems. A self-contained presentation is adopted that covers both fundamental concepts and the most recent biomedical, as well as clinical, applications. Sample analyses in recent clinical studies have shown that gene expression data can be employed to distinguish between tumor types as well as to predict outcomes. Potentially important applications of such results are individualized human cancer therapies or, in general, ‘personalized medicine’. Several cancer detection techniques are currently under development both in the direction of improved detection sensitivity and increased time resolution of cellular events, with the limits of single molecule detection and picosecond time resolution already reached. The urgency for the complete mapping of a human cancer interactome with the help of such novel, high-efficiency / low-cost and ultra-sensitive techniques is also pointed out

    Methods for protein complex prediction and their contributions towards understanding the organization, function and dynamics of complexes

    Get PDF
    Complexes of physically interacting proteins constitute fundamental functional units responsible for driving biological processes within cells. A faithful reconstruction of the entire set of complexes is therefore essential to understand the functional organization of cells. In this review, we discuss the key contributions of computational methods developed till date (approximately between 2003 and 2015) for identifying complexes from the network of interacting proteins (PPI network). We evaluate in depth the performance of these methods on PPI datasets from yeast, and highlight challenges faced by these methods, in particular detection of sparse and small or sub- complexes and discerning of overlapping complexes. We describe methods for integrating diverse information including expression profiles and 3D structures of proteins with PPI networks to understand the dynamics of complex formation, for instance, of time-based assembly of complex subunits and formation of fuzzy complexes from intrinsically disordered proteins. Finally, we discuss methods for identifying dysfunctional complexes in human diseases, an application that is proving invaluable to understand disease mechanisms and to discover novel therapeutic targets. We hope this review aptly commemorates a decade of research on computational prediction of complexes and constitutes a valuable reference for further advancements in this exciting area.Comment: 1 Tabl

    Functional modules in the Arabidopsis core cell cycle binary protein-protein interaction network

    Get PDF
    As in other eukaryotes, cell division in plants is highly conserved and regulated by cyclin-dependent kinases (CDKs) that are themselves predominantly regulated at the posttranscriptional level by their association with proteins such as cyclins. Although over the last years the knowledge of the plant cell cycle has considerably increased, little is known on the assembly and regulation of the different CDK complexes. To map protein-protein interactions between core cell cycle proteins of Arabidopsis thaliana, a binary protein-protein interactome network was generated using two complementary high-throughput interaction assays, yeast two-hybrid and bimolecular fluorescence complementation. Pairwise interactions among 58 core cell cycle proteins were tested, resulting in 357 interactions, of which 293 have not been reported before. Integration of the binary interaction results with cell cycle phase-dependent expression information and localization data allowed the construction of a dynamic interaction network. The obtained interaction map constitutes a framework for further in-depth analysis of the cell cycle machinery

    Increased signaling entropy in cancer requires the scale-free property of protein interaction networks

    Full text link
    One of the key characteristics of cancer cells is an increased phenotypic plasticity, driven by underlying genetic and epigenetic perturbations. However, at a systems-level it is unclear how these perturbations give rise to the observed increased plasticity. Elucidating such systems-level principles is key for an improved understanding of cancer. Recently, it has been shown that signaling entropy, an overall measure of signaling pathway promiscuity, and computable from integrating a sample's gene expression profile with a protein interaction network, correlates with phenotypic plasticity and is increased in cancer compared to normal tissue. Here we develop a computational framework for studying the effects of network perturbations on signaling entropy. We demonstrate that the increased signaling entropy of cancer is driven by two factors: (i) the scale-free (or near scale-free) topology of the interaction network, and (ii) a subtle positive correlation between differential gene expression and node connectivity. Indeed, we show that if protein interaction networks were random graphs, described by Poisson degree distributions, that cancer would generally not exhibit an increased signaling entropy. In summary, this work exposes a deep connection between cancer, signaling entropy and interaction network topology.Comment: 20 pages, 5 figures. In Press in Sci Rep 201
    corecore