10,498 research outputs found

    Near-horizon symmetries of extremal black holes

    Full text link
    Recent work has demonstrated an attractor mechanism for extremal rotating black holes subject to the assumption of a near-horizon SO(2,1) symmetry. We prove the existence of this symmetry for any extremal black hole with the same number of rotational symmetries as known four and five dimensional solutions (including black rings). The result is valid for a general two-derivative theory of gravity coupled to abelian vectors and uncharged scalars, allowing for a non-trivial scalar potential. We prove that it remains valid in the presence of higher-derivative corrections. We show that SO(2,1)-symmetric near-horizon solutions can be analytically continued to give SU(2)-symmetric black hole solutions. For example, the near-horizon limit of an extremal 5D Myers-Perry black hole is related by analytic continuation to a non-extremal cohomogeneity-1 Myers-Perry solution.Comment: 21 pages, latex. v2: minor improvements v3: Corrected error in argument excluding de Sitter and Poincare-symmetric cases. Results unaffecte

    Using 3D Stringy Gravity to Understand the Thurston Conjecture

    Full text link
    We present a string inspired 3D Euclidean field theory as the starting point for a modified Ricci flow analysis of the Thurston conjecture. In addition to the metric, the theory contains a dilaton, an antisymmetric tensor field and a Maxwell-Chern Simons field. For constant dilaton, the theory appears to obey a Birkhoff theorem which allows only nine possible classes of solutions, depending on the signs of the parameters in the action. Eight of these correspond to the eight Thurston geometries, while the ninth describes the metric of a squashed three sphere. It therefore appears that one can construct modified Ricci flow equations in which the topology of the geometry is encoded in the parameters of an underlying field theory.Comment: 17 pages, Late

    Natural Intrinsic Geometrical Symmetries

    Get PDF
    A proposal is made for what could well be the most natural symmetrical Riemannian spaces which are homogeneous but not isotropic, i.e. of what could well be the most natural class of symmetrical spaces beyond the spaces of constant Riemannian curvature, that is, beyond the spaces which are homogeneous and isotropic, or, still, the spaces which satisfy the axiom of free mobility.Comment: Theorem 20 is corrected and References [13, 14] are adde
    corecore