7,789 research outputs found

    The boomerang returns? Accounting for the impact of uncertainties on the dynamics of remanufacturing systems

    Get PDF
    Recent years have witnessed companies abandon traditional open-loop supply chain structures in favour of closed-loop variants, in a bid to mitigate environmental impacts and exploit economic opportunities. Central to the closed-loop paradigm is remanufacturing: the restoration of used products to useful life. While this operational model has huge potential to extend product life-cycles, the collection and recovery processes diminish the effectiveness of existing control mechanisms for open-loop systems. We systematically review the literature in the field of closed-loop supply chain dynamics, which explores the time-varying interactions of material and information flows in the different elements of remanufacturing supply chains. We supplement this with further reviews of what we call the three ‘pillars’ of such systems, i.e. forecasting, collection, and inventory and production control. This provides us with an interdisciplinary lens to investigate how a ‘boomerang’ effect (i.e. sale, consumption, and return processes) impacts on the behaviour of the closed-loop system and to understand how it can be controlled. To facilitate this, we contrast closed-loop supply chain dynamics research to the well-developed research in each pillar; explore how different disciplines have accommodated the supply, process, demand, and control uncertainties; and provide insights for future research on the dynamics of remanufacturing systems

    Ship product modelling

    Get PDF
    This paper is a fundamental review of ship product modeling techniques with a focus on determining the state of the art, to identify any shortcomings and propose future directions. The review addresses ship product data representations, product modeling techniques and integration issues, and life phase issues. The most significant development has been the construction of the ship Standard for the Exchange of Product Data (STEP) application protocols. However, difficulty has been observed with respect to the general uptake of the standards, in particular with the application to legacy systems, often resulting in embellishments to the standards and limiting the ability to further exchange the product data. The EXPRESS modeling language is increasingly being superseded by the extensible mark-up language (XML) as a method to map the STEP data, due to its wider support throughout the information technology industry and its more obvious structure and hierarchy. The associated XML files are, however, larger than those produced using the EXPRESS language and make further demands on the already considerable storage required for the ship product model. Seamless integration between legacy applications appears to be difficult to achieve using the current technologies, which often rely on manual interaction for the translation of files. The paper concludes with a discussion of future directions that aim to either solve or alleviate these issues

    Aeronautical engineering: A special bibliography with indexes, supplement 82, April 1977

    Get PDF
    This bibliography lists 311 reports, articles, and other documents introduced into the NASA scientific and technical information system in March 1977
    • …
    corecore