233 research outputs found

    Information Spreading on Almost Torus Networks

    Get PDF
    Epidemic modeling has been extensively used in the last years in the field of telecommunications and computer networks. We consider the popular Susceptible-Infected-Susceptible spreading model as the metric for information spreading. In this work, we analyze information spreading on a particular class of networks denoted almost torus networks and over the lattice which can be considered as the limit when the torus length goes to infinity. Almost torus networks consist on the torus network topology where some nodes or edges have been removed. We find explicit expressions for the characteristic polynomial of these graphs and tight lower bounds for its computation. These expressions allow us to estimate their spectral radius and thus how the information spreads on these networks

    An In-Depth Analysis of the Slingshot Interconnect

    Full text link
    The interconnect is one of the most critical components in large scale computing systems, and its impact on the performance of applications is going to increase with the system size. In this paper, we will describe Slingshot, an interconnection network for large scale computing systems. Slingshot is based on high-radix switches, which allow building exascale and hyperscale datacenters networks with at most three switch-to-switch hops. Moreover, Slingshot provides efficient adaptive routing and congestion control algorithms, and highly tunable traffic classes. Slingshot uses an optimized Ethernet protocol, which allows it to be interoperable with standard Ethernet devices while providing high performance to HPC applications. We analyze the extent to which Slingshot provides these features, evaluating it on microbenchmarks and on several applications from the datacenter and AI worlds, as well as on HPC applications. We find that applications running on Slingshot are less affected by congestion compared to previous generation networks.Comment: To be published in Proceedings of The International Conference for High Performance Computing Networking, Storage, and Analysis (SC '20) (2020

    OutFlank Routing: Increasing Throughput in Toroidal Interconnection Networks

    Full text link
    We present a new, deadlock-free, routing scheme for toroidal interconnection networks, called OutFlank Routing (OFR). OFR is an adaptive strategy which exploits non-minimal links, both in the source and in the destination nodes. When minimal links are congested, OFR deroutes packets to carefully chosen intermediate destinations, in order to obtain travel paths which are only an additive constant longer than the shortest ones. Since routing performance is very sensitive to changes in the traffic model or in the router parameters, an accurate discrete-event simulator of the toroidal network has been developed to empirically validate OFR, by comparing it against other relevant routing strategies, over a range of typical real-world traffic patterns. On the 16x16x16 (4096 nodes) simulated network OFR exhibits improvements of the maximum sustained throughput between 14% and 114%, with respect to Adaptive Bubble Routing.Comment: 9 pages, 5 figures, to be presented at ICPADS 201

    Segment Switching: A New Switching Strategy for Optical HPC Networks

    Full text link
    [EN] Photonics are becoming realistic technologies for implementing interconnection networks in near future Exascale supercomputer systems. Photonics present key features to design high-performance and scalable supercomputer networks, such as higher bandwidth and lower latencies than their electronic supercomputer networks counterparts. Some research work is focused on conventional network topologies built with photonic technologies, with the aim of taking advantage of photonic characteristics. Nevertheless, these approaches fail in that they keep low the network utilization. We looked into this downside and we found that circuit switching was the main performance limitation. In this article we propose a new switching mechanism, called Segment Switching, to address this constraint and improve the network utilization. Segment Switching splits the circuit in segments of the whole path, and uses buffering on selected nodes on the network. Experimental results show that the devised approach signicantly outperforms photonic circuit switching in conventional torus and fat tree networks by 70% and 90%, respectively.This work was supported in part by the Ministerio de Ciencia, Innovacion y Universidades and in part by the European ERDF under Grant RTI2018-098156-B-C51.Duro, J.; Petit Martí, SV.; Gómez Requena, ME.; Sahuquillo Borrás, J. (2021). Segment Switching: A New Switching Strategy for Optical HPC Networks. IEEE Access. 9:43095-43106. https://doi.org/10.1109/ACCESS.2021.3058135S4309543106
    • …
    corecore