6 research outputs found

    New 3D scanning techniques for complex scenes

    Get PDF
    This thesis presents new 3D scanning methods for complex scenes, such as surfaces with fine-scale geometric details, translucent objects, low-albedo objects, glossy objects, scenes with interreflection, and discontinuous scenes. Starting from the observation that specular reflection is a reliable visual cue for surface mesostructure perception, we propose a progressive acquisition system that captures a dense specularity field as the only information for mesostructure reconstruction. Our method can efficiently recover surfaces with fine-scale geometric details from complex real-world objects. Translucent objects pose a difficult problem for traditional optical-based 3D scanning techniques. We analyze and compare two descattering methods, phaseshifting and polarization, and further present several phase-shifting and polarization based methods for high quality 3D scanning of translucent objects. We introduce the concept of modulation based separation, where a high frequency signal is multiplied on top of another signal. The modulated signal inherits the separation properties of the high frequency signal and allows us to remove artifacts due to global illumination. Thismethod can be used for efficient 3D scanning of scenes with significant subsurface scattering and interreflections.Diese Dissertation präsentiert neuartige Verfahren für die 3D-Digitalisierung komplexer Szenen, wie z.B. Oberflächen mit sehr feinen Strukturen, durchscheinende Objekte, Gegenstände mit geringem Albedo, glänzende Objekte, Szenen mit Lichtinterreflektionen und unzusammenhängende Szenen. Ausgehend von der Beobachtung, daß die spekulare Reflektion ein zuverlässiger, visueller Hinweis für die Mesostruktur einer Oberfläche ist, stellen wir ein progressives Meßsystem vor, um Spekularitätsfelder zu messen. Aus diesen Feldern kann anschließend die Mesostruktur rekonstruiert werden. Mit unserer Methode können Oberflächen mit sehr feinen Strukturen von komplexen, realen Objekten effizient aufgenommen werden. Durchscheinende Objekte stellen ein großes Problem für traditionelle, optischbasierte 3D-Rekonstruktionsmethoden dar. Wir analysieren und vergleichen zwei verschiedene Methoden zum Eliminieren von Lichtstreuung (Descattering): Phasenverschiebung und Polarisation. Weiterhin präsentieren wir mehrere hochqualitative 3D-Rekonstruktionsmethoden für durchscheinende Objekte, die auf Phasenverschiebung und Polarisation basieren. Außerdem führen wir das Konzept der modulationsbasierten Signaltrennung ein. Hierzu wird ein hochfrequentes Signal zu einem anderes Signal multipliziert. Das so modulierte Signal erhält damit die separierenden Eigenschaften des hochfrequenten Signals. Dies erlaubt unsMeßartefakte aufgrund von globalen Beleuchtungseffekten zu vermeiden. Dieses Verfahren kann zum effizienten 3DScannen von Szenen mit durchscheinden Objekten und Interreflektionen benutzt werden

    The theory and practice of coplanar shadowgram imaging for acquiring visual hulls of intricate objects

    No full text
    Abstract Acquiring 3D models of intricate objects (like tree branches, bicycles and insects) is a challenging task due to severe self-occlusions, repeated thin structures, and surface discontinuities. In theory, a shape-from-silhouettes (SFS) approach can overcome these difficulties and reconstruct visual hulls that are close to the actual shapes, regardless of the complexity of the object. In practice, however, SFS is highly sensitive to errors in silhouette contours and the calibration of the imaging system, and has therefore not been used for obtaining accurate shapes with a large number of views. In this work, we present a practical approach to SFS using a novel technique called coplanar shadowgram imaging that allows us to use dozens to even hundreds of views for visual hull reconstruction. A point light source is moved around an object and the shadows (silhouettes) cast onto a single background plane are imaged. We characterize this imaging system in terms of image projection, reconstruction ambiguity, epipolar geometry, and shape and source recovery. The coplanarity of the shadowgrams yields unique geometric properties that are not possible in traditional multi-view camera-based imaging systems. These properties allow us to derive a robust and automatic algorithm to recover the visual hull of an object and the 3D positions of the light source simultaneously, regardless of the complexity of the object. We demonstrate the acquisition of several intricate shapes with severe occlusions and thin structures, using 50 to 120 views. This is an extension and consolidation of our previous work on coplanar shadowgram imaging system [1] presented at IEEE International Conference on Computer Vision 2007

    Abstract

    No full text
    Acquiring 3D models of intricate objects (like tree branches, bicycles and insects) is a hard problem due to severe self-occlusions, repeated thin structures and surface discontinuities. In theory, a shape-from-silhouettes (SFS) approach can overcome these difficulties and use many views to reconstruct visual hulls that are close to the actual shapes. In practice, however, SFS is highly sensitive to errors in silhouette contours and the calibration of the imaging system, and therefore not suitable for obtaining reliable shapes with a large number of views. We present a practical approach to SFS using a novel technique called coplanar shadowgram imaging, that allows us to use dozens to even hundreds of views for visual hull reconstruction. Here, a point light source is moved around an object and the shadows (silhouettes) cast onto a single background plane are observed. We characterize this imaging system in terms of image projection, reconstruction ambiguity, epipolar geometry, and shape and source recovery. The coplanarity of the shadowgrams yields novel geometric properties that are not possible in traditional multi-view camerabased imaging systems. These properties allow us to derive a robust and automatic algorithm to recover the visual hull of an object and the 3D positions of light source simultaneously, regardless of the complexity of the object. We demonstrate the acquisition of several intricate shapes with severe occlusions and thin structures, using 50 to 120 views. 1
    corecore