153,770 research outputs found

    Delta-mediated cross-frequency coupling organizes oscillatory activity across the rat cortico-basal ganglia network

    Get PDF
    The brain's ability to integrate different behavioral and cognitive processes relies on its capacity to generate neural oscillations in a cooperative and coordinated manner. Cross-frequency coupling (CFC) has recently been proposed as one of the mechanisms involved in organizing brain activity. Here we investigated the phase-to-amplitude CFC (PA-CFC) patterns of the oscillatory activity in the cortico-basal ganglia network of healthy, freely moving rats. Within-structure analysis detected consistent PA-CFC patterns in the four regions analyzed, with the phase of delta waves modulating the amplitude of activity in the gamma (low-gamma ~50 Hz; high-gamma ~80 Hz) and high frequency ranges (high frequency oscillations HFO, ~150 Hz). Between-structure analysis revealed that the phase of delta waves parses the occurrence of transient episodes of coherence in the gamma and high frequency bands across the entire network, providing temporal windows of coherence between different structures. Significantly, this specific spatio-temporal organization was affected by the action of dopaminergic drugs. Taken together, our findings suggest that delta-mediated PA-CFC plays a key role in the organization of local and distant activities in the rat cortico-basal ganglia network by fine-tuning the timing of synchronization events across different structures

    Consistency and diversity of spike dynamics in the neurons of bed nucleus of Stria Terminalis of the rat: a dynamic clamp study

    Get PDF
    Neurons display a high degree of variability and diversity in the expression and regulation of their voltage-dependent ionic channels. Under low level of synaptic background a number of physiologically distinct cell types can be identified in most brain areas that display different responses to standard forms of intracellular current stimulation. Nevertheless, it is not well understood how biophysically different neurons process synaptic inputs in natural conditions, i.e., when experiencing intense synaptic bombardment in vivo. While distinct cell types might process synaptic inputs into different patterns of action potentials representing specific "motifs'' of network activity, standard methods of electrophysiology are not well suited to resolve such questions. In the current paper we performed dynamic clamp experiments with simulated synaptic inputs that were presented to three types of neurons in the juxtacapsular bed nucleus of stria terminalis (jcBNST) of the rat. Our analysis on the temporal structure of firing showed that the three types of jcBNST neurons did not produce qualitatively different spike responses under identical patterns of input. However, we observed consistent, cell type dependent variations in the fine structure of firing, at the level of single spikes. At the millisecond resolution structure of firing we found high degree of diversity across the entire spectrum of neurons irrespective of their type. Additionally, we identified a new cell type with intrinsic oscillatory properties that produced a rhythmic and regular firing under synaptic stimulation that distinguishes it from the previously described jcBNST cell types. Our findings suggest a sophisticated, cell type dependent regulation of spike dynamics of neurons when experiencing a complex synaptic background. The high degree of their dynamical diversity has implications to their cooperative dynamics and synchronization

    Simultaneous multi-patch-clamp and extracellular-array recordings: Single neuron reflects network activity

    Full text link
    The increasing number of recording electrodes enhances the capability of capturing the network's cooperative activity, however, using too many monitors might alter the properties of the measured neural network and induce noise. Using a technique that merges simultaneous multi-patch-clamp and multi-electrode array recordings of neural networks in-vitro, we show that the membrane potential of a single neuron is a reliable and super-sensitive probe for monitoring such cooperative activities and their detailed rhythms. Specifically, the membrane potential and the spiking activity of a single neuron are either highly correlated or highly anti-correlated with the time-dependent macroscopic activity of the entire network. This surprising observation also sheds light on the cooperative origin of neuronal burst in cultured networks. Our findings present an alternative flexible approach to the technique based on a massive tiling of networks by large-scale arrays of electrodes to monitor their activity.Comment: 36 pages, 9 figure

    DocuDrama

    Get PDF
    This paper presents an approach combining concepts of virtual storytelling with cooperative processes. We will describe why storytelling is relevant in cooperation support applications. We will outline how storytelling concepts provide a new quality for groupware applications. Different prototypes illustrate a combination of a groupware application with various storytelling components in a Theatre of Work

    Why we interact : on the functional role of the striatum in the subjective experience of social interaction

    Get PDF
    Acknowledgments We thank Neil Macrae and Axel Cleeremans for comments on earlier versions of this manuscript. Furthermore, we are grateful to Dorothé Krug and Barbara Elghahwagi for their assistance in data acquisition. This study was supported by a grant of the Köln Fortune Program of the Medical Faculty at the University of Cologne to L.S. and by a grant “Other Minds” of the German Ministry of Research and Education to K.V.Peer reviewedPreprin

    Collaborative design : managing task interdependencies and multiple perspectives

    Get PDF
    This paper focuses on two characteristics of collaborative design with respect to cooperative work: the importance of work interdependencies linked to the nature of design problems; and the fundamental function of design cooperative work arrangement which is the confrontation and combination of perspectives. These two intrinsic characteristics of the design work stress specific cooperative processes: coordination processes in order to manage task interdependencies, establishment of common ground and negotiation mechanisms in order to manage the integration of multiple perspectives in design

    Designing for interaction

    Get PDF
    At present, the design of computer-supported group-based learning (CS)GBL) is often based on subjective decisions regarding tasks, pedagogy and technology, or concepts such as ‘cooperative learning’ and ‘collaborative learning’. Critical review reveals these concepts as insufficiently substantial to serve as a basis for (CS)GBL design. Furthermore, the relationship between outcome and group interaction is rarely specified a priori. Thus, there is a need for a more systematic approach to designing (CS)GBL that focuses on the elicitation of expected interaction processes. A framework for such a process-oriented methodology is proposed. Critical elements that affect interaction are identified: learning objectives, task-type, level of pre-structuring, group size and computer support. The proposed process-oriented method aims to stimulate designers to adopt a more systematic approach to (CS)GBL design according to the interaction expected, while paying attention to critical elements that affect interaction. This approach may bridge the gap between observed quality of interaction and learning outcomes and foster (CS)GBL design that focuses on the heart of the matter: interaction

    Symbolic Activities in Virtual Spaces

    Get PDF
    This paper presents an approach to combine concepts ofsymbolic acting and virtual storytelling with the support ofcooperative processes. We will motivate why symboliclanguages are relevant in the social context of awarenessapplications. We will describe different symbolicpresentations and illustrate their application in three differentprototypes

    Modeling co-operative volume signaling in a plexus of nitric oxide synthase-expressing neurons

    Get PDF
    In vertebrate and invertebrate brains, nitric oxide (NO) synthase (NOS) is frequently expressed in extensive meshworks (plexuses) of exceedingly fine fibers. In this paper, we investigate the functional implications of this morphology by modeling NO diffusion in fiber systems of varying fineness and dispersal. Because size severely limits the signaling ability of an NO-producing fiber, the predominance of fine fibers seems paradoxical. Our modeling reveals, however, that cooperation between many fibers of low individual efficacy can generate an extensive and strong volume signal. Importantly, the signal produced by such a system of cooperating dispersed fibers is significantly more homogeneous in both space and time than that produced by fewer larger sources. Signals generated by plexuses of fine fibers are also better centered on the active region and less dependent on their particular branching morphology. We conclude that an ultrafine plexus is configured to target a volume of the brain with a homogeneous volume signal. Moreover, by translating only persistent regional activity into an effective NO volume signal, dispersed sources integrate neural activity over both space and time. In the mammalian cerebral cortex, for example, the NOS plexus would preferentially translate persistent regional increases in neural activity into a signal that targets blood vessels residing in the same region of the cortex, resulting in an increased regional blood flow. We propose that the fineness-dependent properties of volume signals may in part account for the presence of similar NOS plexus morphologies in distantly related animals

    Characterization and Classification of Collaborative Tools

    Get PDF
    Traditionally, collaboration has been a means for organizations to do their work. However, the context in which they do this work is changing, especially in regards to where the work is done, how the work is organized, who does the work, and with this the characteristics of collaboration. Software development is no exception; it is itself a collaborative effort that is likewise affected by these changes. In the context of both open source software development projects and communities and organizations that develop corporate products, more and more developers need to communicate and liaise with colleagues in geographically distant places about the software product they are conceiving, designing, building, testing, debugging, deploying and maintaining. Thus, work teams face sizeable collaborative challenges, for which they have need of tools that they can use to communicate and coordinate their Work efficiently
    corecore