227,296 research outputs found

    Mexitl: Multimedia in Executable Interval Temporal Logic

    Get PDF
    This paper explores a formalism for describing a wide class of multimedia document constraints, based on an interval temporal logic. We describe the requirements on temporal logic specification that arise from the multimedia documents application area. In particular, we highlight a canonical specification example. Then we present the temporal logic formalism that we use. This extends existing interval temporal logic with a number of new features: actions, framing of actions, past operators, a projection-like operator called filter and a new handling of interval length. A model theory, logic and satisfaction relation are defined for the notation, a specification of the canonical example is presented, and a proof system for the logic is introduced

    Logics of Temporal-Epistemic Actions

    Get PDF
    We present Dynamic Epistemic Temporal Logic, a framework for reasoning about operations on multi-agent Kripke models that contain a designated temporal relation. These operations are natural extensions of the well-known "action models" from Dynamic Epistemic Logic. Our "temporal action models" may be used to define a number of informational actions that can modify the "objective" temporal structure of a model along with the agents' basic and higher-order knowledge and beliefs about this structure, including their beliefs about the time. In essence, this approach provides one way to extend the domain of action model-style operations from atemporal Kripke models to temporal Kripke models in a manner that allows actions to control the flow of time. We present a number of examples to illustrate the subtleties involved in interpreting the effects of our extended action models on temporal Kripke models. We also study preservation of important epistemic-temporal properties of temporal Kripke models under temporal action model-induced operations, provide complete axiomatizations for two theories of temporal action models, and connect our approach with previous work on time in Dynamic Epistemic Logic

    A temporal dynamic deontic logic

    Get PDF
    This paper presents a formalization of refraining from actions and a deontic logic based on a process logic. The notion of refraining is needed to handle obligated actions. To refrain to do an action is to do something else. The process logic used is a mix of dynamic logic and temporal logic: actions in it are interpreted as sets of paths and temporal formulas describe the process of performing actions. The deontic logic has a temporal propositional constant saying that a bad thing will be done in the next moment. Normative properties of actions can be defined according to what happens in the process of performing actions

    A first-order Temporal Logic for Actions

    Full text link
    We present a multi-modal action logic with first-order modalities, which contain terms which can be unified with the terms inside the subsequent formulas and which can be quantified. This makes it possible to handle simultaneously time and states. We discuss applications of this language to action theory where it is possible to express many temporal aspects of actions, as for example, beginning, end, time points, delayed preconditions and results, duration and many others. We present tableaux rules for a decidable fragment of this logic

    Progression and Verification of Situation Calculus Agents with Bounded Beliefs

    Get PDF
    We investigate agents that have incomplete information and make decisions based on their beliefs expressed as situation calculus bounded action theories. Such theories have an infinite object domain, but the number of objects that belong to fluents at each time point is bounded by a given constant. Recently, it has been shown that verifying temporal properties over such theories is decidable. We take a first-person view and use the theory to capture what the agent believes about the domain of interest and the actions affecting it. In this paper, we study verification of temporal properties over online executions. These are executions resulting from agents performing only actions that are feasible according to their beliefs. To do so, we first examine progression, which captures belief state update resulting from actions in the situation calculus. We show that, for bounded action theories, progression, and hence belief states, can always be represented as a bounded first-order logic theory. Then, based on this result, we prove decidability of temporal verification over online executions for bounded action theories. © 2015 The Author(s

    Reasoning about Actions with Temporal Answer Sets

    Full text link
    In this paper we combine Answer Set Programming (ASP) with Dynamic Linear Time Temporal Logic (DLTL) to define a temporal logic programming language for reasoning about complex actions and infinite computations. DLTL extends propositional temporal logic of linear time with regular programs of propositional dynamic logic, which are used for indexing temporal modalities. The action language allows general DLTL formulas to be included in domain descriptions to constrain the space of possible extensions. We introduce a notion of Temporal Answer Set for domain descriptions, based on the usual notion of Answer Set. Also, we provide a translation of domain descriptions into standard ASP and we use Bounded Model Checking techniques for the verification of DLTL constraints.Comment: To appear in Theory and Practice of Logic Programmin
    • …
    corecore