1,782 research outputs found

    Polycyclic aromatic hydrocarbons biodegradation using isolated strains under indigenous condition

    Get PDF
    The treatment and disposal of domestic sIudge is an expensive and environmentally sensitive problem. It is also a growing problem since sludge production will continue to increase as new wastewzter treatment plants are built due to population increase. The large volume of domestic sIudge produced had made it difficult for many countries including Malaysia to assure complete treatment of the sludge before discharging to the receiving environment. Domestic sludge contains diverse range of pollutants such as pathogen, inorganic and organic compounds. These pollutants are toxic, mutagenic or carcinogenic and may threaten human health. Iiilproper disposal and handling of sludge may pose serious impact to the environment especially on soil and water cycles. Previous studies on Malaysian domestic sludge only reported on bulk parameters and heavy metals. Thus, no study reported on organic micro pollutants, namely, polycylic aromatic hydrocarbons (PAHs). Their recalcitrance and persistence make them problematic environmental contaminants. Microbial degradation is considered to be the primary mechanism of PAHs removal from the environment. Much has been reported on biodegradation of PAHs in several countries but there is a lack of information quantitative on this subject in Malaysia. This study is carried out to understand the nature of domestic sludge and to provide a better understanding on the biodegradation processes of PAHs. The methodology of this study comprised field activities, laboratory work and mathematical modelling. Field activities involved sampling of domestic sludge from Kolej Mawar, Universiti Teknologi MARA, Shah Alam, Selangor. Laboratory activities include seven phases of experimental works. First phase is characterization study of domestic sludge based on bulk parameters, heavy metals and PAHs. Second phase is enrichment and purification of bacteria isolated from domestic sludge using single PAHs and mixed PAHs as growth substrate. This was followed by identification of bacteria using BIOLOG system. The fourth phase focussed on turbidity test to monitor growth rate of the isolated bacteria. Preliminary degradation study involves optimization of the process at different substrate concentration, bacteria concentration, pH and temperature. The optimum conditions established from optimization study were used in degradation study. In biodegradation study, two experimental conditions were performed. These conditions include using bacteria isolated from single PAHs as substrate and bacteria isolated from mixed PAHs. Protein and pH tests were done during degradation study. Final activity is mathematical modelling of the biodegradation process. In general results on bulk parameters are comparable to previous studies. Zinc was the main compound with a mean concentration of 11 96.4 mglkg. PAHs were also detected in all of the samples, with total concentration between 0.72 to 5.36 mglkg dry weight for six PAHs. In the examined samples, phenanthrene was the main compound with a mean concentration of 1.0567 mglkg. The results fiom purification studies of bacteria strains sucessfull isolated 13 bacteria strains fiom single PAH substrate while three bacteria were isolated from the mixed PAHs substrate. Based on bacteria growth rates, only six strains grown on single PAHs and three strains grown on mixed PAHs were used for further studies. Results from the optimization study of biodegradation indicated that maximum rate of PAHs removal occurred at 100 mg~-' of PAHs, 10% bacteria concentration, pH 7.0 and 30°C. The results showed that bacteria grown on lower ring of PAHs are not able to grow on higher ring of PAHs. As for example Micrococcus diversus grown on napthalene as sole carbon source was unable to degrade other PAHs like acenapthylene, acenapthene, fluorene, phenanthrene and antlracene. In the case of bacteria isolated from mixed PAHs, the results showed that most of the napthalene was degraded by isolated strains with the highest average degradation rate followed by acenapthylene, acenapthene, fluorene, phenanthrene and anthracene. 3773(53867 3(53867.1�781.8�781�0,10,1+ D4ff + c\,cpda~ition trends were observed in the study could be attributed to the different subsr , i,lo\~ir 'Led during isolation process. Interaction through cometabolism and synergistic ocolq bacteria strains isolated from single substrate. Thus, only synergistic interaction was oL, :a 77ed for bacteria isolated from mixed substrate. Corynebacterium urolyticum re\e;;ed I,, be the best strain in degrading PAHs. The experimental results have led to a model conccl~t desclibing I'AHs degradation

    On the Experimental Evaluation of Vehicular Networks: Issues, Requirements and Methodology Applied to a Real Use Case

    Get PDF
    One of the most challenging fields in vehicular communications has been the experimental assessment of protocols and novel technologies. Researchers usually tend to simulate vehicular scenarios and/or partially validate new contributions in the area by using constrained testbeds and carrying out minor tests. In this line, the present work reviews the issues that pioneers in the area of vehicular communications and, in general, in telematics, have to deal with if they want to perform a good evaluation campaign by real testing. The key needs for a good experimental evaluation is the use of proper software tools for gathering testing data, post-processing and generating relevant figures of merit and, finally, properly showing the most important results. For this reason, a key contribution of this paper is the presentation of an evaluation environment called AnaVANET, which covers the previous needs. By using this tool and presenting a reference case of study, a generic testing methodology is described and applied. This way, the usage of the IPv6 protocol over a vehicle-to-vehicle routing protocol, and supporting IETF-based network mobility, is tested at the same time the main features of the AnaVANET system are presented. This work contributes in laying the foundations for a proper experimental evaluation of vehicular networks and will be useful for many researchers in the area.Comment: in EAI Endorsed Transactions on Industrial Networks and Intelligent Systems, 201

    Robotic Wireless Sensor Networks

    Full text link
    In this chapter, we present a literature survey of an emerging, cutting-edge, and multi-disciplinary field of research at the intersection of Robotics and Wireless Sensor Networks (WSN) which we refer to as Robotic Wireless Sensor Networks (RWSN). We define a RWSN as an autonomous networked multi-robot system that aims to achieve certain sensing goals while meeting and maintaining certain communication performance requirements, through cooperative control, learning and adaptation. While both of the component areas, i.e., Robotics and WSN, are very well-known and well-explored, there exist a whole set of new opportunities and research directions at the intersection of these two fields which are relatively or even completely unexplored. One such example would be the use of a set of robotic routers to set up a temporary communication path between a sender and a receiver that uses the controlled mobility to the advantage of packet routing. We find that there exist only a limited number of articles to be directly categorized as RWSN related works whereas there exist a range of articles in the robotics and the WSN literature that are also relevant to this new field of research. To connect the dots, we first identify the core problems and research trends related to RWSN such as connectivity, localization, routing, and robust flow of information. Next, we classify the existing research on RWSN as well as the relevant state-of-the-arts from robotics and WSN community according to the problems and trends identified in the first step. Lastly, we analyze what is missing in the existing literature, and identify topics that require more research attention in the future

    The Dynamics of Vehicular Networks in Urban Environments

    Full text link
    Vehicular Ad hoc NETworks (VANETs) have emerged as a platform to support intelligent inter-vehicle communication and improve traffic safety and performance. The road-constrained, high mobility of vehicles, their unbounded power source, and the emergence of roadside wireless infrastructures make VANETs a challenging research topic. A key to the development of protocols for inter-vehicle communication and services lies in the knowledge of the topological characteristics of the VANET communication graph. This paper explores the dynamics of VANETs in urban environments and investigates the impact of these findings in the design of VANET routing protocols. Using both real and realistic mobility traces, we study the networking shape of VANETs under different transmission and market penetration ranges. Given that a number of RSUs have to be deployed for disseminating information to vehicles in an urban area, we also study their impact on vehicular connectivity. Through extensive simulations we investigate the performance of VANET routing protocols by exploiting the knowledge of VANET graphs analysis.Comment: Revised our testbed with even more realistic mobility traces. Used the location of real Wi-Fi hotspots to simulate RSUs in our study. Used a larger, real mobility trace set, from taxis in Shanghai. Examine the implications of our findings in the design of VANET routing protocols by implementing in ns-3 two routing protocols (GPCR & VADD). Updated the bibliography section with new research work
    corecore