69 research outputs found

    A preliminary safety evaluation of route guidance comparing different MMI concepts

    Get PDF

    Novel Approaches to Evaluate the Ability of Vehicles for Secured Transportation

    Get PDF
    The assurance of process safety plays an important role in the field of information technology. Securing the information has become one of the biggest challenges in the present day. Whenever we think about the protected systems the first thing that comes to our mind can be malicious interventions which are increasing immensely day by day. Nowadays we live the world of huge automotive developments with the appearance of the demand for autonomous vehicles. On the other hand, technological developments also provide a lot of advantages for the society. The benefits of autonomous cars include reduced mobility costs, increased safety, increased mobility, significant reduction of traffic collisions. However, it cannot be forgotten that the extension of cyberspace affects the transportation increasingly. Accordingly, cars are produced with high level of connectivity and automation. Therefore, the risks arriving from the cyberspace can now endanger the safe and secured transportation. These tendencies shall motivate manufacturers and developers to permanently improve the ability of vehicles to protect themselves and their passengers

    Performance evaluation of a vehicular edge device for customer feedback in Industry 4.0

    Get PDF
    Industry 4.0 is the term used to specify the current industrial revolution, not only from a technological point of view but also from economical, sociological and strategical points of view. The revolution involves several traditional economic sectors, as is the case with the industrial ecosystem. The main benefits are related to creating value during the entire product lifecycle and in terms of customer feedback, which is particularly relevant to the automotive industry. Its disruptive diffusion is due to various enabling technologies, such as the Internet of Things (IoT), and, as such, it is a vision rather than a technological step forward. Thus, this paper investigates a performance evaluation of an Edge OBD-II device, which collects data from vehicles in an autonomous way in order to provide customer feedback and tracking. The metrics evaluated were different sets of OBD-II Parameter IDs (PIDS), responsiveness, driver behaviour and CO2 pollution estimates. The experiments were performed using three vehicles in urban and highway areas in the city of Natal, Brazil. For validation purposes, the results obtained from the vehicles were compared with an OBD-II Emulator, which demonstrated the accuracy of the experiments.</p

    Performance evaluation of a hybrid sensor and vehicular network to improve road safety

    Get PDF
    In the last years, wireless networks have become a widely spread type of communication technology and also a challenging scientific area for new fields of research. Many contributions in ad hoc networks, such as WSNs (Wireless Sensor Networks) and VANETs (Vehicular Ad Hoc Networks), have been proposed. Nowadays, the huge amount of cars in transit has raised a big interest in vehicular communication technologies. A new type of network has been developed, named HSVN (Hybrid Sensor and Vehicular Network) in which WSNs and VANETs cooperate with the aim of improving road safety. Recent projects, such as CVIS [1] and COMeSafety [2], are focused on improving the road driving. This type of approaches will warn the driver and the co-pilot of any event occurred in the road ahead, such as traffic jam, accidents, bad weather, etc. This way, the number of traffic accidents may decrease and many lives might be saved. Besides, a better selection of non-congested roads will help to reduce pollution. In addition, other attractive services, such as downloading of multimedia services or Internet browsing, would be easily available through infrastructure along the roadside. Transportation in motorways will be easier, safer and more comfortable for passengers. In this paper a HSVN platform is presented, also a communications protocol between VANETs and WSNs is described and evaluated using the NCTUns [3] simulator.Postprint (published version

    Novel Approaches to Evaluate the Ability of Vehicles for Secured Transportation

    Get PDF
    The assurance of process safety plays an important role in the field of information technology. Securing the information has become one of the biggest challenges in the present day. Whenever we think about the protected systems the first thing that comes to our mind can be malicious interventions which are increasing immensely day by day. Nowadays we live the world of huge automotive developments with the appearance of the demand for autonomous vehicles. On the other hand, technological developments also provide a lot of advantages for the society. The benefits of autonomous cars include reduced mobility costs, increased safety, increased mobility, significant reduction of traffic collisions. However, it cannot be forgotten that the extension of cyberspace affects the transportation increasingly. Accordingly, cars are produced with high level of connectivity and automation. Therefore, the risks arriving from the cyberspace can now endanger the safe and secured transportation. These tendencies shall motivate manufacturers and developers to permanently improve the ability of vehicles to protect themselves and their passengers

    Utilizing Simulated Vehicle Trajectory Data from Connected Vehicles to Characterize Performance Measures on an Arterial After an Impactful Incident

    Get PDF
    Traffic incidents are unforeseen events known to affect traffic flow because they reduce the capacity of an arterial corridor segment and normally generate a temporary bottleneck. Identification of retiming requirements to enhance traffic signal operations when an incident occurs depends on operations-oriented traffic signal performance measurements. When effective and real-time traffic signal performance metrics are employed at traffic control centers, delays, fuel use, and air pollution may all be decreased. The majority of currently available traffic signal performance evaluations are based on high-resolution traffic signal controller event data, which gives data on an intersection-by-intersection basis but requires a substantial upfront expenditure. The necessary detecting and communication equipment also involves costly and periodic maintenance. Additionally, the full manifestation of connected vehicles (CVs) is fast approaching with efforts in place to accelerate the adaptation of CVs and their infrastructures. CV technologies have enormous potential to improve traffic mobility and safety. CVs can provide abundant traffic data that is not otherwise captured by roadway detectors or other methods of traffic data collection. Since the observation is independent of any space restrictions and not impacted by queue discharge and buildup, CV data offers more comprehensive and reliable data that can be used to estimate various traffic signal performance measures. This thesis proposes a conceptual CV simulation framework intended to ascertain the effectiveness of CV trajectory-based measures in characterizing an arterial corridor incident, such as a vehicle crash. Using a four-intersection corridor with different signal timing plans, a microscopic simulation model was created in Simulation of Urban Mobility (SUMO), Vehicles in Network Simulation (Veins) and Objective Modular Network Testbed in C++ (OMNeT++) platforms. Furthermore, an algorithm for CVs that defines, detects and disseminates a vehicle crash incident to other vehicles and a roadside unit (RSU) was developed. In the thesis, it is demonstrated how visual performance metrics with CV data may be used to identify an incident. This thesis proposes that traffic signal performance metrics, such as progression quality, split failure, platoon ratios, and safety surrogate measures (SSMs), may be generated using CV trajectory data. The results show that the recommended approaches with access to CV trajectory data would help both performance assessment and operation of traffic control systems. Unlike the current state of the practice (fixed detection technology), the developed conceptual framework can detect incidents that are not captured by intersection-vicinity-limited detectors while requiring immediate attention

    Virtual road signs : a thesis presented in partial fulfilment of the requirements for the degree of Master of Technology in Computer Systems Engineering at Massey University, Palmerston North, New Zealand

    Get PDF
    Conventional road signs are subject to a number of problems and limitations. They are unable to disseminate dynamic information to road users, their visibility is heavily dependent on environmental conditions, they are expensive to maintain and frequently the target of vandals and thieves. Virtual road signs (VRS) differ from conventional signs in that they exist only in an information database - no physical signs exist on the roadside. By projecting virtual signs into a driver's field of view at the correct time, virtual road signs attempt to mimic conventional road signs. In addition, their visibility is independent of weather and traffic conditions, they can be tailored to specific driver and vehicle needs (such as truck drivers), and they cannot be vandalised like physical signs. This thesis examines many of the major technical design decisions that must be made in implementing a virtual road sign system. A software prototype was designed and written to implement an experimental VRS system. The prototype served as a testbed to assess the technical feasibility of a VRS system and investigate alternative VRS designs. One limitation of the project was the lack of suitable display device that could display virtual signs inside a vehicle in real-time. Therefore, this project examined only the proof-of-concept. A test world was created around a university campus in which virtual signs were "erected" to target a visitor to the campus. The prototype used a handheld GPS receiver to track a vehicle as it was driven around the campus. A Kalman filter was implemented to filter the GPS data and predict the motion of the vehicle when GPS data was unavailable. A laptop PC provided onboard processing capability inside the test vehicle. The prototype shows that technical implementation of virtual road signs is potentially feasible, subject to limitations in current display devices such as heads-up displays. Potential applications include signs custom designed for tourists to indicate places of interest, bilingual signage, and aiding co-drivers in rally car driving. Before large-scale implementation can be considered, however, much research is needed, particularly with respect to systems acceptability to the public and road authorities
    corecore