967 research outputs found

    ADVANCED, LOW/ZERO EMISSION BOILER DESIGN AND OPERATION

    Full text link

    A Critical Analysis of the Oxy-Combustion Process: From Mathematical Models to Combustion Product Analysis

    Get PDF
    Fossil fuels are the most widely used resource for energy production. Carbon dioxide (CO2) emissions are correlated with climate change, and therefore these emissions must be reduced in the future. It is possible by means of many different technologies, and one of the most promising seems to be oxyfuel combustion. This process, with oxygen and recirculating gas, produces a concentrated stream of CO2 and water. In recent years, many scientists carried out research and studies on the oxyfuel process, but a sufficient level of knowledge was not yet reached to exploit the great potential of this new technology. Although such areas of research are still highly active, this work provides an overview and summary of the research undertaken, the state of development of the technology, and a comparison of different plants so far

    Application of Advanced Technologies for CO2 Capture from Industrial Sources

    Get PDF
    The great majority of the research on CO2 capture worldwide is today devoted to the integration of new technologies in power plants, which are responsible for about 80% of the worldwide CO2 emission from large stationary sources. The remaining 20% are emitted from industrial sources, mainly cement production plants (~7% of the total emission), refineries (~6%) and iron and steel industry (~5%). Despite their lower overall contribution, the CO2 concentration in flue gas and the average emission per source can be higher than in power plants. Therefore, application of CO2 capture processes on these sources can be more effective and can lead to competitive cost of the CO2 avoided with respect to power plants. Furthermore, industrial CO2 capture could be an important early-opportunity application, or a facilitate demonstration of capture technology at a relative small scale or in a side stream. This paper results from a collaborative activity carried out within the Joint Programme on Carbon Capture and Storage of the European Energy Research Alliance (EERA CCS-JP) and aims at investigating the potentiality of new CO2 technologies in the application on the major industrial emitters

    Cost and performance of some carbon capture technology options for producing different quality COâ‚‚ product streams

    Get PDF
    A techno-economic assessment of power plants with CO2 capture technologies with a focus on process scenarios that deliver different grades of CO2 product purity is presented. The three leading CO2 capture technologies are considered, namely; oxyfuel combustion, pre-combustion and post-combustion capture. The study uses a combination of process simulation of flue gas cleaning processes, modelling with a power plant cost and performance calculator and literature values of key performance criteria in order to evaluate the performance, cost and CO2 product purity of the considered CO2 capture options. For oxyfuel combustion capture plants, three raw CO2 flue gas processing strategies of compression and dehydration only, double flash system purification and distillation purification are considered. Analysis of pre-combustion capture options is based on integrated gasification combined cycle plants using physical solvent systems for capturing CO2 and sulfur species via three routes; co-capture of sulfur impurities with the CO2 stream using Selexol™ solvent, separate capture of CO2 and sulfur impurities using Selexol™, and Rectisol® solvent systems for separate capture of sulfur impurities and CO2. Analysis of post-combustion capture plants was made with and without some conventional pollution control devices. The results highlight the wide variation in CO2 product purity for different oxyfuel combustion capture scenarios and the wide cost variation for the pre-combustion capture scenarios. The post-combustion capture plant with conventional pollution control devices offers high CO2 purity (99.99 mol%) for average cost of considered technologies. The calculations performed will be of use in further analyses of whole chain CCS for the safe and economic capture, transport and storage of CO2

    Technical analysis of CO2 capture pathways and technologies

    Get PDF
    The reduction of CO2 emissions to minimize the impact of the climate change has become a global priority. The continuous implementation of renewable energy sources increases energy efficiency, while the reduction of CO2 emissions opens new options for carbon capture technologies to reduce greenhouse gases emissions. The combination of carbon capture with renewable energy balancing production offers excellent potential for fuels and chemical products and can play an essential role in the future energy system. This paper includes a critical review of the state of the art of different CO2 capture engineering pathways and technologies including a techno-economics analysis and focusing on comparing these technologies depending on the final CO2 application. The current cost for CO2 capture is in the range of 60–110 USD/t, likely to halve by 2030. This review offers technical information to select the most appropriate technology to be used in specific processes and for the different carbon capture pathways, i.e., Pre-combustion, Post-Combustion and Direct Air Capture. This comparison includes the CO2 capture approach for biomethane production by biogas upgrading to substitute fossil natural gas and other alternatives fuels production routes which will be introduces in future works performed by this review authors.Funding for open access charge: Universidad de Málaga / CBUA

    Studies in Pressurized Oxy-Combustion: Process Development and Control of Radiative Heat Transfer

    Get PDF
    Fossil fuels supply over 80% of the world’s primary energy and more than two-thirds of the world’s electricity. Of this, coal alone accounts for over 41% of the electricity supplied globally. Though coal is globally well-distributed and can provide stable and reliable energy on demand, it emits a large amount of carbon dioxide—a greenhouse gas responsible for global warming. Serious concerns over the implication of the increased global temperature have prompted the investigation into low carbon energy alternatives. The idea of capturing the carbon dioxide emitted from the combustion sources is considered as one of the viable alternatives. This would allow the utilization of vast and widespread fuel resources (coal, oil, gas and biomass) that are capable of delivering power on demand, while mitigating the potentially harmful impact of CO2. Support for carbon capture, utilization and sequestration (CCUS) for power plants is, however, limited due to the high cost of electricity associated with the currently available technologies. The ultimate requirement of high pressure CO2 for either sequestration or utilization has led to the investigation of pressurized oxy-combustion technologies. Since at higher pressure, the dew point of the flue gas is higher than at atmospheric pressure, pressurized oxy-combustion can be utilized to extract the latent heat of condensation of the flue gas moisture, leading to an increase in plant efficiency. A new staged, pressurized oxy-combustion (SPOC) process for power generation with carbon capture is presented in the first part of this dissertation. The proposed staged, pressurized oxy-combustion process not only extracts the latent heat of condensation of the flue gas moisture, but unlike first generation oxy-combustion or even other pressurized oxy-combustion processes, it also minimizes the recycle of flue gas. The net plant efficiency of this proposed process is more than 25% higher than that of first generation oxy-combustion. A detailed analysis of the capital and operating costs shows that the cost of electricity generated from this process would meet the U.S. Dept. of Energy target for power generation with carbon capture. The design of a low-recycle oxy-combustion boiler is not trivial. A number of designs have been proposed, but were deemed unfit for the utility industry due to much higher heat flux than could be safely tolerated by the boiler tubes. In the second part of this dissertation, a new burner and boiler design is proposed that could be utilized in the low-recycle SPOC process. The proposed burner/boiler design 1) accommodates low flue gas recycle without exceeding wall heat flux limits, 2) increases the share of radiative over convective heat transfer in the boiler, 3) significantly reduces ash fouling and slagging, and 4) is flexible in that it is able to operate under various thermal loads. The proposed burner design would also lead to reduced soot, as compared to a normal burner. These aspects of the burner/boiler design are investigated in the dissertation

    Integrating Microalgal Production with Industrial Outputs - Reducing Process Inputs and Quantifying the Benefits

    Get PDF
    The cultivation and processing of microalgal biomass is resource- and energy-intensive, negatively affecting the sustainability and profitability of producing bulk commodities, limiting this platform to the manufacture of relatively small quantities of high-value compounds. A biorefinery approach where all fractions of the biomass are valorized might improve the case for producing lower-value products. However, these systems are still likely to operate very close to thresholds of profitability and energy balance, with wide-ranging environmental and societal impacts. It thus remains critically important to reduce the use of costly and impactful inputs and energy-intensive processes involved in these scenarios. Integration with industrial infrastructure can provide a number of residual streams that can be readily used during microalgal cultivation and downstream processing. This review critically considers some of the main inputs required for microalgal biorefineries - such as nutrients, water, carbon dioxide, and heat - and appraises the benefits and possibilities for industrial integration on a more quantitative basis. Recent literature and demonstration studies will also be considered to best illustrate these benefits to both producers and industrial operators. Additionally, this review will highlight some inconsistencies in the data used in assessments of microalgal production scenarios, allowing more accurate evaluation of potential future biorefineries

    OxyFuel combustion of Coal and Biomass

    Get PDF
    • …
    corecore