11 research outputs found

    Evaluating Resilience of Cyber-Physical-Social Systems

    Get PDF
    Nowadays, protecting the network is not the only security concern. Still, in cyber security, websites and servers are becoming more popular as targets due to the ease with which they can be accessed when compared to communication networks. Another threat in cyber physical social systems with human interactions is that they can be attacked and manipulated not only by technical hacking through networks, but also by manipulating people and stealing users’ credentials. Therefore, systems should be evaluated beyond cy- ber security, which means measuring their resilience as a piece of evidence that a system works properly under cyber-attacks or incidents. In that way, cyber resilience is increas- ingly discussed and described as the capacity of a system to maintain state awareness for detecting cyber-attacks. All the tasks for making a system resilient should proactively maintain a safe level of operational normalcy through rapid system reconfiguration to detect attacks that would impact system performance. In this work, we broadly studied a new paradigm of cyber physical social systems and defined a uniform definition of it. To overcome the complexity of evaluating cyber resilience, especially in these inhomo- geneous systems, we proposed a framework including applying Attack Tree refinements and Hierarchical Timed Coloured Petri Nets to model intruder and defender behaviors and evaluate the impact of each action on the behavior and performance of the system.Hoje em dia, proteger a rede não é a única preocupação de segurança. Ainda assim, na segurança cibernética, sites e servidores estão se tornando mais populares como alvos devido à facilidade com que podem ser acessados quando comparados às redes de comu- nicação. Outra ameaça em sistemas sociais ciberfisicos com interações humanas é que eles podem ser atacados e manipulados não apenas por hackers técnicos através de redes, mas também pela manipulação de pessoas e roubo de credenciais de utilizadores. Portanto, os sistemas devem ser avaliados para além da segurança cibernética, o que significa medir sua resiliência como uma evidência de que um sistema funciona adequadamente sob ataques ou incidentes cibernéticos. Dessa forma, a resiliência cibernética é cada vez mais discutida e descrita como a capacidade de um sistema manter a consciência do estado para detectar ataques cibernéticos. Todas as tarefas para tornar um sistema resiliente devem manter proativamente um nível seguro de normalidade operacional por meio da reconfi- guração rápida do sistema para detectar ataques que afetariam o desempenho do sistema. Neste trabalho, um novo paradigma de sistemas sociais ciberfisicos é amplamente estu- dado e uma definição uniforme é proposta. Para superar a complexidade de avaliar a resiliência cibernética, especialmente nesses sistemas não homogéneos, é proposta uma estrutura que inclui a aplicação de refinamentos de Árvores de Ataque e Redes de Petri Coloridas Temporizadas Hierárquicas para modelar comportamentos de invasores e de- fensores e avaliar o impacto de cada ação no comportamento e desempenho do sistema

    Automated Validation of State-Based Client-Centric Isolation with TLA <sup>+</sup>

    Get PDF
    Clear consistency guarantees on data are paramount for the design and implementation of distributed systems. When implementing distributed applications, developers require approaches to verify the data consistency guarantees of an implementation choice. Crooks et al. define a state-based and client-centric model of database isolation. This paper formalizes this state-based model in, reproduces their examples and shows how to model check runtime traces and algorithms with this formalization. The formalized model in enables semi-automatic model checking for different implementation alternatives for transactional operations and allows checking of conformance to isolation levels. We reproduce examples of the original paper and confirm the isolation guarantees of the combination of the well-known 2-phase locking and 2-phase commit algorithms. Using model checking this formalization can also help finding bugs in incorrect specifications. This improves feasibility of automated checking of isolation guarantees in synthesized synchronization implementations and it provides an environment for experimenting with new designs.</p

    Recent advances in petri nets and concurrency

    Get PDF
    CEUR Workshop Proceeding

    Software Engineering and Petri Nets

    Get PDF
    This booklet contains the proceedings of the Workshop on Software Engineering and Petri Nets (SEPN), held on June 26, 2000. The workshop was held in conjunction with the 21st International Conference on Application and Theory of Petri Nets (ICATPN-2000), organised by the CPN group of the Department of Computer Science, University of Aarhus, Denmark. The SEPN workshop papers are available in electronic form via the web page:http://www.daimi.au.dk/pn2000/proceeding

    Specification and automatic verification of trust-based multi-agent systems

    Get PDF
    We present a new logic-based framework for modeling and automatically verifying trust in Multi-Agent Systems (MASs). We start by refining TCTL, a temporal logic of trust that extends the Computation Tree Logic (CTL) to enable reasoning about trust with preconditions. A new vector-based version of interpreted systems is defined to capture the trust relationship between the interacting parties. We introduce a set of reasoning postulates along with formal proofs to support our logic. Moreover, we present new symbolic model checking algorithms to formally and automatically verify the system under consideration against some desirable properties expressed using the proposed logic. We fully implemented our proposed algorithms as a model checker tool called MCMAS-T on top of the MCMAS model checker for MASs along with its new input language VISPL (Vector-extended ISPL). We evaluated the tool and reported experimental results using a real-life scenario in the healthcare field

    Model Checking Trust-based Multi-Agent Systems

    Get PDF
    Trust has been the focus of many research projects, both theoretical and practical, in the recent years, particularly in domains where open multi-agent technologies are applied (e.g., Internet-based markets, Information retrieval, etc.). The importance of trust in such domains arises mainly because it provides a social control that regulates the relationships and interactions among agents. Despite the growing number of various multi-agent applications, they still encounter many challenges in their formal modeling and the verification of agents’ behaviors. Many formalisms and approaches that facilitate the specifications of trust in Multi-Agent Systems (MASs) can be found in the literature. However, most of these approaches focus on the cognitive side of trust where the trusting entity is normally capable of exhibiting properties about beliefs, desires, and intentions. Hence, the trust is considered as a belief of an agent (the truster) involving ability and willingness of the trustee to perform some actions for the truster. Nevertheless, in open MASs, entities can join and leave the interactions at any time. This means MASs will actually provide no guarantee about the behavior of their agents, which makes the capability of reasoning about trust and checking the existence of untrusted computations highly desired. This thesis aims to address the problem of modeling and verifying at design time trust in MASs by (1) considering a cognitive-independent view of trust where trust ingredients are seen from a non-epistemic angle, (2) introducing a logical language named Trust Computation Tree Logic (TCTL), which extends CTL with preconditional, conditional, and graded trust operators along with a set of reasoning postulates in order to explore its capabilities, (3) proposing a new accessibility relation which is needed to define the semantics of the trust modal operators. This accessibility relation is defined so that it captures the intuition of trust while being easily computable, (4) investigating the most intuitive and efficient algorithm for computing the trust set by developing, implementing, and experimenting different model checking techniques in order to compare between them in terms of memory consumption, efficiency, and scalability with regard to the number of considered agents, (5) evaluating the performance of the model checking techniques by analyzing the time and space complexity. The approach has been applied to different application domains to evaluate its computational performance and scalability. The obtained results reveal the effectiveness of the proposed approach, making it a promising methodology in practice

    Cascading Verification: An Integrated Method for Domain-Specific Model Checking

    Get PDF
    Model checking is an established formal method for verifying the desired behavioral properties of system models. But popular model checkers tend to support low-level modeling languages that require intricate models to represent even the simplest systems. Modeling complexity arises in part from the need to encode domain knowledge, including domain objects and concepts, and their relationships, at relatively low levels of abstraction. We will demonstrate that, once formalized, domain knowledge can be reused to enhance the abstraction level of model and property specifications, and the effectiveness of probabilistic model checking. This thesis describes a novel method for domain-specific model checking called cascading verification. The method uses composite reasoning over high-level system specifications and formalized domain knowledge to synthesize both low-level system models and the behavioral properties that need to be verified with respect to those models. In particular, model builders use a high-level domain-specific language (DSL) to encode system specifications that can be analyzed with model checking. Domain knowledge is encoded in the Web Ontology Language (OWL), the Semantic Web Rule Language (SWRL) and Prolog, which are combined to overcome their individual limitations. Synthesized models and properties are analyzed with the probabilistic model checker PRISM. Cascading verification is illustrated with a prototype system that verifies the correctness of uninhabited aerial vehicle (UAV) mission plans. An evaluation of this prototype reveals non-trivial reductions in the size and complexity of input system specifications compared to the artifacts synthesized for PRISM
    corecore