53,452 research outputs found

    Intelligent indexing of crime scene photographs

    Get PDF
    The Scene of Crime Information System's automatic image-indexing prototype goes beyond extracting keywords and syntactic relations from captions. The semantic information it gathers gives investigators an intuitive, accurate way to search a database of cases for specific photographic evidence. Intelligent, automatic indexing and retrieval of crime scene photographs is one of the main functions of SOCIS, our research prototype developed within the Scene of Crime Information System project. The prototype, now in its final development and evaluation phase, applies advanced natural language processing techniques to text-based image indexing and retrieval to tackle crime investigation needs effectively and efficiently

    Knowledge Author: Facilitating user-driven, Domain content development to support clinical information extraction

    Get PDF
    Background: Clinical Natural Language Processing (NLP) systems require a semantic schema comprised of domain-specific concepts, their lexical variants, and associated modifiers to accurately extract information from clinical texts. An NLP system leverages this schema to structure concepts and extract meaning from the free texts. In the clinical domain, creating a semantic schema typically requires input from both a domain expert, such as a clinician, and an NLP expert who will represent clinical concepts created from the clinician's domain expertise into a computable format usable by an NLP system. The goal of this work is to develop a web-based tool, Knowledge Author, that bridges the gap between the clinical domain expert and the NLP system development by facilitating the development of domain content represented in a semantic schema for extracting information from clinical free-text. Results: Knowledge Author is a web-based, recommendation system that supports users in developing domain content necessary for clinical NLP applications. Knowledge Author's schematic model leverages a set of semantic types derived from the Secondary Use Clinical Element Models and the Common Type System to allow the user to quickly create and modify domain-related concepts. Features such as collaborative development and providing domain content suggestions through the mapping of concepts to the Unified Medical Language System Metathesaurus database further supports the domain content creation process. Two proof of concept studies were performed to evaluate the system's performance. The first study evaluated Knowledge Author's flexibility to create a broad range of concepts. A dataset of 115 concepts was created of which 87 (76%) were able to be created using Knowledge Author. The second study evaluated the effectiveness of Knowledge Author's output in an NLP system by extracting concepts and associated modifiers representing a clinical element, carotid stenosis, from 34 clinical free-text radiology reports using Knowledge Author and an NLP system, pyConText. Knowledge Author's domain content produced high recall for concepts (targeted findings: 86%) and varied recall for modifiers (certainty: 91% sidedness: 80%, neurovascular anatomy: 46%). Conclusion: Knowledge Author can support clinical domain content development for information extraction by supporting semantic schema creation by domain experts

    An Approach to Mining Picture Objects Based on Textual Cues

    Get PDF
    Abstract. The task of extracting knowledge from text is an important research problem for information processing and document understanding. Approaches to capture the semantics of picture objects in documents constitute subjects of great interest in the domain of document mining recently. In this paper, we present an approach to extracting information about picture objects in a document using cues from the text written about them. The goal of this work is to mine a document and understand the content of picture objects in the document based on meaning inferred from the texts written about such objects. We apply some Natural Language Processing techniques to extract semantic information about picture objects in a document and process texts written about them. The mining algorithms were developed and implemented as a working system and gone through testing and experimentations. Results and future extensions of the work are discussed in this paper

    Rapport : a fact-based question answering system for portuguese

    Get PDF
    Question answering is one of the longest-standing problems in natural language processing. Although natural language interfaces for computer systems can be considered more common these days, the same still does not happen regarding access to specific textual information. Any full text search engine can easily retrieve documents containing user specified or closely related terms, however it is typically unable to answer user questions with small passages or short answers. The problem with question answering is that text is hard to process, due to its syntactic structure and, to a higher degree, to its semantic contents. At the sentence level, although the syntactic aspects of natural language have well known rules, the size and complexity of a sentence may make it difficult to analyze its structure. Furthermore, semantic aspects are still arduous to address, with text ambiguity being one of the hardest tasks to handle. There is also the need to correctly process the question in order to define its target, and then select and process the answers found in a text. Additionally, the selected text that may yield the answer to a given question must be further processed in order to present just a passage instead of the full text. These issues take also longer to address in languages other than English, as is the case of Portuguese, that have a lot less people working on them. This work focuses on question answering for Portuguese. In other words, our field of interest is in the presentation of short answers, passages, and possibly full sentences, but not whole documents, to questions formulated using natural language. For that purpose, we have developed a system, RAPPORT, built upon the use of open information extraction techniques for extracting triples, so called facts, characterizing information on text files, and then storing and using them for answering user queries done in natural language. These facts, in the form of subject, predicate and object, alongside other metadata, constitute the basis of the answers presented by the system. Facts work both by storing short and direct information found in a text, typically entity related information, and by containing in themselves the answers to the questions already in the form of small passages. As for the results, although there is margin for improvement, they are a tangible proof of the adequacy of our approach and its different modules for storing information and retrieving answers in question answering systems. In the process, in addition to contributing with a new approach to question answering for Portuguese, and validating the application of open information extraction to question answering, we have developed a set of tools that has been used in other natural language processing related works, such as is the case of a lemmatizer, LEMPORT, which was built from scratch, and has a high accuracy. Many of these tools result from the improvement of those found in the Apache OpenNLP toolkit, by pre-processing their input, post-processing their output, or both, and by training models for use in those tools or other, such as MaltParser. Other tools include the creation of interfaces for other resources containing, for example, synonyms, hypernyms, hyponyms, or the creation of lists of, for instance, relations between verbs and agents, using rules

    An Urdu semantic tagger - lexicons, corpora, methods and tools

    Get PDF
    Extracting and analysing meaning-related information from natural language data has attracted the attention of researchers in various fields, such as Natural Language Processing (NLP), corpus linguistics, data sciences, etc. An important aspect of such automatic information extraction and analysis is the semantic annotation of language data using semantic annotation tool (a.k.a semantic tagger). Generally, different semantic annotation tools have been designed to carry out various levels of semantic annotations, for instance, sentiment analysis, word sense disambiguation, content analysis, semantic role labelling, etc. These semantic annotation tools identify or tag partial core semantic information of language data, moreover, they tend to be applicable only for English and other European languages. A semantic annotation tool that can annotate semantic senses of all lexical units (words) is still desirable for the Urdu language based on USAS (the UCREL Semantic Analysis System) semantic taxonomy, in order to provide comprehensive semantic analysis of Urdu language text. This research work report on the development of an Urdu semantic tagging tool and discuss challenging issues which have been faced in this Ph.D. research work. Since standard NLP pipeline tools are not widely available for Urdu, alongside the Urdu semantic tagger a suite of newly developed tools have been created: sentence tokenizer, word tokenizer and part-of-speech tagger. Results for these proposed tools are as follows: word tokenizer reports F1F_1 of 94.01\%, and accuracy of 97.21\%, sentence tokenizer shows F1_1 of 92.59\%, and accuracy of 93.15\%, whereas, POS tagger shows an accuracy of 95.14\%. The Urdu semantic tagger incorporates semantic resources (lexicon and corpora) as well as semantic field disambiguation methods. In terms of novelty, the NLP pre-processing tools are developed either using rule-based, statistical, or hybrid techniques. Furthermore, all semantic lexicons have been developed using a novel combination of automatic or semi-automatic approaches: mapping, crowdsourcing, statistical machine translation, GIZA++, word embeddings, and named entity. A large multi-target annotated corpus is also constructed using a semi-automatic approach to test accuracy of the Urdu semantic tagger, proposed corpus is also used to train and test supervised multi-target Machine Learning classifiers. The results show that Random k-labEL Disjoint Pruned Sets and Classifier Chain multi-target classifiers outperform all other classifiers on the proposed corpus with a Hamming Loss of 0.06\% and Accuracy of 0.94\%. The best lexical coverage of 88.59\%, 99.63\%, 96.71\% and 89.63\% are obtained on several test corpora. The developed Urdu semantic tagger shows encouraging precision on the proposed test corpus of 79.47\%

    Semantic Tagging for the Urdu Language:Annotated Corpus and Multi-Target Classification Methods

    Get PDF
    Extracting and analysing meaning-related information from natural language data has attracted the attention of researchers in various fields, such as natural language processing, corpus linguistics, information retrieval, and data science. An important aspect of such automatic information extraction and analysis is the annotation of language data using semantic tagging tools. Different semantic tagging tools have been designed to carry out various levels of semantic analysis, for instance, named entity recognition and disambiguation, sentiment analysis, word sense disambiguation, content analysis, and semantic role labelling. Common to all of these tasks, in the supervised setting, is the requirement for a manually semantically annotated corpus, which acts as a knowledge base from which to train and test potential word and phrase-level sense annotations. Many benchmark corpora have been developed for various semantic tagging tasks, but most are for English and other European languages. There is a dearth of semantically annotated corpora for the Urdu language, which is widely spoken and used around the world. To fill this gap, this study presents a large benchmark corpus and methods for the semantic tagging task for the Urdu language. The proposed corpus contains 8,000 tokens in the following domains or genres: news, social media, Wikipedia, and historical text (each domain having 2K tokens). The corpus has been manually annotated with 21 major semantic fields and 232 sub-fields with the USAS (UCREL Semantic Analysis System) semantic taxonomy which provides a comprehensive set of semantic fields for coarse-grained annotation. Each word in our proposed corpus has been annotated with at least one and up to nine semantic field tags to provide a detailed semantic analysis of the language data, which allowed us to treat the problem of semantic tagging as a supervised multi-target classification task. To demonstrate how our proposed corpus can be used for the development and evaluation of Urdu semantic tagging methods, we extracted local, topical and semantic features from the proposed corpus and applied seven different supervised multi-target classifiers to them. Results show an accuracy of 94% on our proposed corpus which is free and publicly available to download
    • …
    corecore