4,378 research outputs found

    Multipair Full-Duplex Relaying with Massive Arrays and Linear Processing

    Get PDF
    We consider a multipair decode-and-forward relay channel, where multiple sources transmit simultaneously their signals to multiple destinations with the help of a full-duplex relay station. We assume that the relay station is equipped with massive arrays, while all sources and destinations have a single antenna. The relay station uses channel estimates obtained from received pilots and zero-forcing (ZF) or maximum-ratio combining/maximum-ratio transmission (MRC/MRT) to process the signals. To reduce significantly the loop interference effect, we propose two techniques: i) using a massive receive antenna array; or ii) using a massive transmit antenna array together with very low transmit power at the relay station. We derive an exact achievable rate in closed-form for MRC/MRT processing and an analytical approximation of the achievable rate for ZF processing. This approximation is very tight, especially for large number of relay station antennas. These closed-form expressions enable us to determine the regions where the full-duplex mode outperforms the half-duplex mode, as well as, to design an optimal power allocation scheme. This optimal power allocation scheme aims to maximize the energy efficiency for a given sum spectral efficiency and under peak power constraints at the relay station and sources. Numerical results verify the effectiveness of the optimal power allocation scheme. Furthermore, we show that, by doubling the number of transmit/receive antennas at the relay station, the transmit power of each source and of the relay station can be reduced by 1.5dB if the pilot power is equal to the signal power, and by 3dB if the pilot power is kept fixed, while maintaining a given quality-of-service

    On the Outage Probability of the Full-Duplex Interference-Limited Relay Channel

    Get PDF
    In this paper, we study the performance, in terms of the asymptotic error probability, of a user which communicates with a destination with the aid of a full-duplex in-band relay. We consider that the network is interference-limited, and interfering users are distributed as a Poisson point process. In this case, the asymptotic error probability is upper bounded by the outage probability (OP). We investigate the outage behavior for well-known cooperative schemes, namely, decode-and-forward (DF) and compress-and-forward (CF) considering fading and path loss. For DF we determine the exact OP and develop upper bounds which are tight in typical operating conditions. Also, we find the correlation coefficient between source and relay signals which minimizes the OP when the density of interferers is small. For CF, the achievable rates are determined by the spatial correlation of the interferences, and a straightforward analysis isn't possible. To handle this issue, we show the rate with correlated noises is at most one bit worse than with uncorrelated noises, and thus find an upper bound on the performance of CF. These results are useful to evaluate the performance and to optimize relaying schemes in the context of full-duplex wireless networks.Comment: 30 pages, 4 figures. Final version. To appear in IEEE JSAC Special Issue on Full-duplex Wireless Communications and Networks, 201

    Half-Duplex or Full-Duplex Relaying: A Capacity Analysis under Self-Interference

    Full text link
    In this paper multi-antenna half-duplex and full-duplex relaying are compared from the perspective of achievable rates. Full-duplexing operation requires additional resources at the relay such as antennas and RF chains for self-interference cancellation. Using a practical model for the residual self-interference, full-duplex achievable rates and degrees of freedom are computed for the cases for which the relay has the same number of antennas or the same number of RF chains as in the half-duplex case, and compared with their half-duplex counterparts. It is shown that power scaling at the relay is necessary to maximize the the degrees of freedom in the full-duplex mode.Comment: New references added and some typos have been corrected. 6 Pages, 5 Figures. Accepted for publication in the CISS-201
    corecore