244 research outputs found

    Scaling exponents for fracture surfaces in homogenous glass and glassy ceramics

    Get PDF
    We investigate the scaling properties of post-mortem fracture surfaces in silica glass and glassy ceramics. In both cases, the 2D height-height correlation function is found to obey Family-Viseck scaling properties, but with two sets of critical exponents, in particular a roughness exponent ζ≃0.75\zeta\simeq 0.75 in homogeneous glass and ζ≃0.4\zeta\simeq 0.4 in glassy ceramics. The ranges of length-scales over which these two scalings are observed are shown to be below and above the size of process zone respectively. A model derived from Linear Elastic Fracture Mechanics (LEFM) in the quasistatic approximation succeeds to reproduce the scaling exponents observed in glassy ceramics. The critical exponents observed in homogeneous glass are conjectured to reflect damage screening occurring for length-scales below the size of the process zone

    Understanding scaling through history-dependent processes with collapsing sample space

    Get PDF
    History-dependent processes are ubiquitous in natural and social systems. Many such stochastic processes, especially those that are associated with complex systems, become more constrained as they unfold, meaning that their sample-space, or their set of possible outcomes, reduces as they age. We demonstrate that these sample-space reducing (SSR) processes necessarily lead to Zipf's law in the rank distributions of their outcomes. We show that by adding noise to SSR processes the corresponding rank distributions remain exact power-laws, p(x)∼x−λp(x)\sim x^{-\lambda}, where the exponent directly corresponds to the mixing ratio of the SSR process and noise. This allows us to give a precise meaning to the scaling exponent in terms of the degree to how much a given process reduces its sample-space as it unfolds. Noisy SSR processes further allow us to explain a wide range of scaling exponents in frequency distributions ranging from α=2\alpha = 2 to ∞\infty. We discuss several applications showing how SSR processes can be used to understand Zipf's law in word frequencies, and how they are related to diffusion processes in directed networks, or ageing processes such as in fragmentation processes. SSR processes provide a new alternative to understand the origin of scaling in complex systems without the recourse to multiplicative, preferential, or self-organised critical processes.Comment: 7 pages, 5 figures in Proceedings of the National Academy of Sciences USA (published ahead of print April 13, 2015

    Non-Poisson processes: regression to equilibrium versus equilibrium correlation functions

    Full text link
    We study the response to perturbation of non-Poisson dichotomous fluctuations that generate super-diffusion. We adopt the Liouville perspective and with it a quantum-like approach based on splitting the density distribution into a symmetric and an anti-symmetric component. To accomodate the equilibrium condition behind the stationary correlation function, we study the time evolution of the anti-symmetric component, while keeping the symmetric component at equilibrium. For any realistic form of the perturbed distribution density we expect a breakdown of the Onsager principle, namely, of the property that the subsequent regression of the perturbation to equilibrium is identical to the corresponding equilibrium correlation function. We find the directions to follow for the calculation of higher-order correlation functions, an unsettled problem, which has been addressed in the past by means of approximations yielding quite different physical effects.Comment: 30 page
    • …
    corecore