10,780 research outputs found

    Real Time Turbulent Video Perfecting by Image Stabilization and Super-Resolution

    Full text link
    Image and video quality in Long Range Observation Systems (LOROS) suffer from atmospheric turbulence that causes small neighbourhoods in image frames to chaotically move in different directions and substantially hampers visual analysis of such image and video sequences. The paper presents a real-time algorithm for perfecting turbulence degraded videos by means of stabilization and resolution enhancement. The latter is achieved by exploiting the turbulent motion. The algorithm involves generation of a reference frame and estimation, for each incoming video frame, of a local image displacement map with respect to the reference frame; segmentation of the displacement map into two classes: stationary and moving objects and resolution enhancement of stationary objects, while preserving real motion. Experiments with synthetic and real-life sequences have shown that the enhanced videos, generated in real time, exhibit substantially better resolution and complete stabilization for stationary objects while retaining real motion.Comment: Submitted to The Seventh IASTED International Conference on Visualization, Imaging, and Image Processing (VIIP 2007) August, 2007 Palma de Mallorca, Spai

    Observation and Understanding of the Initial Unstable Electrical Contact Behaviors

    Get PDF
    Reliable and long-lifetime electrical contact is a very important issue in the field of radio frequency microelectromechanical systems (MEMS) and in energy transmission applications. In this paper, the initial unstable electrical contact phenomena under the conditions of micro-newton-scale contact force and nanometer-scale contact gap have been experimentally observed. The repetitive contact bounces at nanoscale are confirmed by the measured instantaneous waveforms of contact force and contact voltage. Moreover, the corresponding physical model for describing the competition between the electrostatic force and the restoring force of the mobile contact is present. Then, the dynamic process of contact closure is explicitly calculated with the numerical method. Finally, the effects of spring rigidness and open voltage on the unstable electrical contact behaviors are investigated experimentally and theoretically. This paper highlights that in MEMS systems switch, minimal actuation velocity is required to prevent mechanical bounce and excessive wear

    Restoring Narrow Linewidth to a Gradient-Broadened Magnetic Resonance by Inhomogeneous Dressing

    Full text link
    We study the possibility of counteracting the line-broadening of atomic magnetic resonances due to inhomogeneities of the static magnetic field by means of spatially dependent magnetic dressing, driven by an alternating field that oscillates much faster than the Larmor precession frequency. We demonstrate that an intrinsic resonance linewidth of 25~Hz that has been broadened up to hundreds Hz by a magnetic field gradient, can be recovered by the application of an appropriate inhomogeneous dressing field. The findings of our experiments may have immediate and important implications, because they facilitate the use of atomic magnetometers as robust, high sensitivity detectors in ultra-low-field NMR imaging.Comment: 9 pages, 7 figures, 33 refs. This is the unedited versio

    Inferring Latent States and Refining Force Estimates via Hierarchical Dirichlet Process Modeling in Single Particle Tracking Experiments

    Get PDF
    Optical microscopy provides rich spatio-temporal information characterizing in vivo molecular motion. However, effective forces and other parameters used to summarize molecular motion change over time in live cells due to latent state changes, e.g., changes induced by dynamic micro-environments, photobleaching, and other heterogeneity inherent in biological processes. This study focuses on techniques for analyzing Single Particle Tracking (SPT) data experiencing abrupt state changes. We demonstrate the approach on GFP tagged chromatids experiencing metaphase in yeast cells and probe the effective forces resulting from dynamic interactions that reflect the sum of a number of physical phenomena. State changes are induced by factors such as microtubule dynamics exerting force through the centromere, thermal polymer fluctuations, etc. Simulations are used to demonstrate the relevance of the approach in more general SPT data analyses. Refined force estimates are obtained by adopting and modifying a nonparametric Bayesian modeling technique, the Hierarchical Dirichlet Process Switching Linear Dynamical System (HDP-SLDS), for SPT applications. The HDP-SLDS method shows promise in systematically identifying dynamical regime changes induced by unobserved state changes when the number of underlying states is unknown in advance (a common problem in SPT applications). We expand on the relevance of the HDP-SLDS approach, review the relevant background of Hierarchical Dirichlet Processes, show how to map discrete time HDP-SLDS models to classic SPT models, and discuss limitations of the approach. In addition, we demonstrate new computational techniques for tuning hyperparameters and for checking the statistical consistency of model assumptions directly against individual experimental trajectories; the techniques circumvent the need for "ground-truth" and subjective information.Comment: 25 pages, 6 figures. Differs only typographically from PLoS One publication available freely as an open-access article at http://journals.plos.org/plosone/article?id=10.1371/journal.pone.013763

    Flow conveying and diagnosis with carbon nanotube arrays

    Get PDF
    Dense arrays of aligned carbon nanotubes are designed into strips, nanowicks, as a miniature wicking element for liquid delivery and potential microfluidic chemical analysis devices. Liquid wicks away along the nanowicks spontaneously. This delivery function of nanowicks enables novel fluid transport devices to run without any power input, moving parts or external pump. Flow around the opaque nanotubes can be detected either directly or indirectly. Direct signals of the flow come out of dyed liquid or from the liquid–air interface; indirect signals are detected through observing surface-tension-induced deformation and dislocation of the nanotubes. Here we show that flow progression around and inside nanowicks is sensitive to liquid properties. Different flow progression leaves different traces of liquid. These traces not only allow liquid diagnosis any time after sampling, but also enable analysis of flow at a nanoscale resolution with scanning electron microscopy

    Nanoscopy of bacterial cells immobilized by holographic optical tweezers

    Get PDF
    Diekmann R, Wolfson D, Spahn C, Heilemann M, Schüttpelz M, Huser T. Nanoscopy of bacterial cells immobilized by holographic optical tweezers. Nature Communications. 2016;7(1): 13711

    Mixing and transport by ciliary carpets: a numerical study

    Get PDF
    We use a 3D computational model to study the fluid transport and mixing due to the beating of an infinite array of cilia. In accord with recent experiments, we observe two distinct regions: a fluid transport region above the cilia and a fluid mixing region below the cilia tip. The metachronal wave due to phase differences between neighboring cilia is known to enhance the fluid transport above the ciliary tip. In this work, we show that the metachronal wave also enhances the mixing rates in the sub-ciliary region, often simultaneously with the flow rate enhancement. Our results suggest that this simultaneous enhancement in transport and mixing is due to an enhancement in shear flow. As the flow above the cilia increases, shear rate in the fluid increases and such shear enhances stretching, which is an essential ingredient for mixing. Estimates of the mixing time scale indicate that, compared to diffusion, the mixing due to the cilia beat may be significant and sometimes dominates chemical diffusion.Comment: submitted to Journal of Fluid Mechanic

    Modelling the degradation of vibration characteristics of reinforced concrete beams due to flexural damage

    Get PDF
    This paper presents an improved crack model incorporating non-linearity of flexural damage in concrete to reproduce changes in vibration properties of cracked reinforced concrete beams. A reinforced concrete beam model with multiple-distributed flexural cracks is developed, in which the cracked regions are modelled using the fictitious crack approach and the undamaged parts are treated in a linear-elastic manner. The model is subject to incremental static four-point bending, and its dynamic behaviour is examined using different sinusoidal excitations including swept sine and harmonic signals. From the swept sine excitations, the model simulates changes in resonant frequency with increasing damage. The harmonic excitations are utilised to investigate changes in modal stiffness extracted from the restoring force surfaces, and changes in the level of non-linearity are deduced from the appearance of super-harmonics in the frequency domain. The simulation results are compared with experimental data of reinforced concrete beams subject to incremental static four-point bending. The comparisons revealed that the proposed crack model is able to quantitatively predict changes in vibration characteristics of cracked reinforced concrete beams. Changes are sensitive to support stiffness, where the sensitivity increases with stiffer support conditions. Changes in the level of non-linearity with damage are not suitable for damage detection in reinforced concrete structures because they do not follow a monotonic trend
    • …
    corecore