22 research outputs found

    Complexity Hierarchies Beyond Elementary

    Full text link
    We introduce a hierarchy of fast-growing complexity classes and show its suitability for completeness statements of many non elementary problems. This hierarchy allows the classification of many decision problems with a non-elementary complexity, which occur naturally in logic, combinatorics, formal languages, verification, etc., with complexities ranging from simple towers of exponentials to Ackermannian and beyond.Comment: Version 3 is the published version in TOCT 8(1:3), 2016. I will keep updating the catalogue of problems from Section 6 in future revision

    Aspects Topologiques des Représentations en Analyse Calculable

    Get PDF
    Computable analysis provides a formalization of algorithmic computations over infinite mathematical objects. The central notion of this theory is the symbolic representation of objects, which determines the computation power of the machine, and has a direct impact on the difficulty to solve any given problem. The friction between the discrete nature of computations and the continuous nature of mathematical objects is captured by topology, which expresses the idea of finite approximations of infinite objects.We thoroughly study the multiple interactions between computations and topology, analysing the information that can be algorithmically extracted from a representation. In particular, we focus on the comparison between two representations of a single family of objects, on the precise relationship between algorithmic and topological complexity of problems, and on the relationship between finite and infinite representations.L’analyse calculable permet de formaliser le traitement algorithmique d’objets mathématiques infinis. La théorie repose sur une représentation symbolique des objets, dont le choix détermine les capacités de calcul de la machine, notamment sa difficulté à résoudre chaque problème donné. La friction entre le caractère discret du calcul et la nature continue des objets est capturée par la topologie, qui exprime l’idée d’approximation finie d’objets infinis.Nous étudions en profondeur les multiples interactions entre calcul et topologie, cherchant à analyser l’information qui peut être extraite algorithmiquement d’une représentation. Je me penche plus particulièrement sur la comparaison entre deux représentations d’une même famille d’objets, sur les liens détaillés entre complexité algorithmique et topologique des problèmes, ainsi que sur les relations entre représentations finies et infinies

    The independence of control structures in abstract programming systems

    Get PDF
    AbstractAn instance of a control structure is a mapping which takes one or more programs into a new program whose behavior is based on that of the original programs. An instance of a control structure is effective iff it is effectively computable. In order to study the interrelationships of control structures, . we consider abstract programming systems (numberings of the partial recursive functions) in which some control structures, effective or otherwise, are present, but others are not. This paper uses the techniques of recursive function theory, including recursion theorems and priority arguments to prove the independence of certain control structures in abstract programming systems. For example, we have obtained the following results. In effective numberings of the partial recursive functions, the one-one effective Kleene recursion theorem and the one-one effective (partial) if-then-else control structure are independent, but together, they yield all effective control structures. In any effective numbering, the effective Kleene form of the double recursion theorem yields all effective control structures

    The Power of Priority Channel Systems

    Full text link

    Workshop on Formal Languages, Automata and Petri Nets

    Get PDF
    This report contains abstracts of the lectures presented at the workshop 'Formal Languages, Automata and Petri-Nets' held at the University of Stuttgart on January 16-17, 1998. The workshop brought together partners of the German-Hungarian project No. 233.6, Forschungszentrum Karlsruhe, Germany, and No. D/102, TeT Foundation, Budapest, Hungary. It provided an opportunity to present work supported by this project as well as related topics

    Elements of computability, decidability, and complexity (Third edition)

    Get PDF
    These lecture notes are intended to introduce the reader to the basic notions of computability theory, decidability, and complexity. More information on these subjects can be found in classical books such as [Cut80,Dav58,Her69,HoU79,Rog67]. The results reported in these notes are taken from those books and in various parts we closely follow their style of presentation. The reader is encouraged to look at those books for improving his/her knowledge on these topics. Some parts of the chapter on complexity are taken from the lecture notes of a beautiful course given by Prof. Leslie Valiant at Edinburgh University, Scotland, in 1979. It was, indeed, a very stimulating and enjoyable course. For the notions of Predicate Calculus we have used in this book the reader may refer to [Men87]. I would like to thank Dr. Maurizio Proietti at IASI-CNR (Roma, Italy), my colleagues, and my students at the University of Roma Tor Vergata and, in particular, Michele Martone. They have been for me a source of continuous inspiration and enthusiasm. Finally, I would like to thank Dr. Gioacchino Onorati and Lorenzo Costantini of the Aracne Publishing Company for their helpful cooperation

    Elements of computability, decidability, and complexity (Third edition)

    Get PDF
    These lecture notes are intended to introduce the reader to the basic notions of computability theory, decidability, and complexity. More information on these subjects can be found in classical books such as [Cut80,Dav58,Her69,HoU79,Rog67]. The results reported in these notes are taken from those books and in various parts we closely follow their style of presentation. The reader is encouraged to look at those books for improving his/her knowledge on these topics. Some parts of the chapter on complexity are taken from the lecture notes of a beautiful course given by Prof. Leslie Valiant at Edinburgh University, Scotland, in 1979. It was, indeed, a very stimulating and enjoyable course. For the notions of Predicate Calculus we have used in this book the reader may refer to [Men87]. I would like to thank Dr. Maurizio Proietti at IASI-CNR (Roma, Italy), my colleagues, and my students at the University of Roma Tor Vergata and, in particular, Michele Martone. They have been for me a source of continuous inspiration and enthusiasm. Finally, I would like to thank Dr. Gioacchino Onorati and Lorenzo Costantini of the Aracne Publishing Company for their helpful cooperation
    corecore