2,309 research outputs found

    The Advice Complexity of a Class of Hard Online Problems

    Get PDF
    The advice complexity of an online problem is a measure of how much knowledge of the future an online algorithm needs in order to achieve a certain competitive ratio. Using advice complexity, we define the first online complexity class, AOC. The class includes independent set, vertex cover, dominating set, and several others as complete problems. AOC-complete problems are hard, since a single wrong answer by the online algorithm can have devastating consequences. For each of these problems, we show that log⁥(1+(c−1)c−1/cc)n=Θ(n/c)\log\left(1+(c-1)^{c-1}/c^{c}\right)n=\Theta (n/c) bits of advice are necessary and sufficient (up to an additive term of O(log⁥n)O(\log n)) to achieve a competitive ratio of cc. The results are obtained by introducing a new string guessing problem related to those of Emek et al. (TCS 2011) and B\"ockenhauer et al. (TCS 2014). It turns out that this gives a powerful but easy-to-use method for providing both upper and lower bounds on the advice complexity of an entire class of online problems, the AOC-complete problems. Previous results of Halld\'orsson et al. (TCS 2002) on online independent set, in a related model, imply that the advice complexity of the problem is Θ(n/c)\Theta (n/c). Our results improve on this by providing an exact formula for the higher-order term. For online disjoint path allocation, B\"ockenhauer et al. (ISAAC 2009) gave a lower bound of Ω(n/c)\Omega (n/c) and an upper bound of O((nlog⁥c)/c)O((n\log c)/c) on the advice complexity. We improve on the upper bound by a factor of log⁥c\log c. For the remaining problems, no bounds on their advice complexity were previously known.Comment: Full paper to appear in Theory of Computing Systems. A preliminary version appeared in STACS 201

    Lower Bounds on the Oracle Complexity of Nonsmooth Convex Optimization via Information Theory

    Full text link
    We present an information-theoretic approach to lower bound the oracle complexity of nonsmooth black box convex optimization, unifying previous lower bounding techniques by identifying a combinatorial problem, namely string guessing, as a single source of hardness. As a measure of complexity we use distributional oracle complexity, which subsumes randomized oracle complexity as well as worst-case oracle complexity. We obtain strong lower bounds on distributional oracle complexity for the box [−1,1]n[-1,1]^n, as well as for the LpL^p-ball for p≄1p \geq 1 (for both low-scale and large-scale regimes), matching worst-case upper bounds, and hence we close the gap between distributional complexity, and in particular, randomized complexity, and worst-case complexity. Furthermore, the bounds remain essentially the same for high-probability and bounded-error oracle complexity, and even for combination of the two, i.e., bounded-error high-probability oracle complexity. This considerably extends the applicability of known bounds

    Advice Complexity of the Online Induced Subgraph Problem

    Get PDF
    Several well-studied graph problems aim to select a largest (or smallest) induced subgraph with a given property of the input graph. Examples of such problems include maximum independent set, maximum planar graph, and many others. We consider these problems, where the vertices are presented online. With each vertex, the online algorithm must decide whether to include it into the constructed subgraph, based only on the subgraph induced by the vertices presented so far. We study the properties that are common to all these problems by investigating the generalized problem: for a hereditary property \pty, find some maximal induced subgraph having \pty. We study this problem from the point of view of advice complexity. Using a result from Boyar et al. [STACS 2015], we give a tight trade-off relationship stating that for inputs of length n roughly n/c bits of advice are both needed and sufficient to obtain a solution with competitive ratio c, regardless of the choice of \pty, for any c (possibly a function of n). Surprisingly, a similar result cannot be obtained for the symmetric problem: for a given cohereditary property \pty, find a minimum subgraph having \pty. We show that the advice complexity of this problem varies significantly with the choice of \pty. We also consider preemptive online model, where the decision of the algorithm is not completely irreversible. In particular, the algorithm may discard some vertices previously assigned to the constructed set, but discarded vertices cannot be reinserted into the set again. We show that, for the maximum induced subgraph problem, preemption cannot help much, giving a lower bound of Ω(n/(c2log⁥c))\Omega(n/(c^2\log c)) bits of advice needed to obtain competitive ratio cc, where cc is any increasing function bounded by \sqrt{n/log n}. We also give a linear lower bound for c close to 1

    On the Power of Advice and Randomization for Online Bipartite Matching

    Get PDF
    While randomized online algorithms have access to a sequence of uniform random bits, deterministic online algorithms with advice have access to a sequence of advice bits, i.e., bits that are set by an all powerful oracle prior to the processing of the request sequence. Advice bits are at least as helpful as random bits, but how helpful are they? In this work, we investigate the power of advice bits and random bits for online maximum bipartite matching (MBM). The well-known Karp-Vazirani-Vazirani algorithm is an optimal randomized (1−1e)(1-\frac{1}{e})-competitive algorithm for \textsc{MBM} that requires access to Θ(nlog⁥n)\Theta(n \log n) uniform random bits. We show that Ω(log⁥(1Ï”)n)\Omega(\log(\frac{1}{\epsilon}) n) advice bits are necessary and O(1Ï”5n)O(\frac{1}{\epsilon^5} n) sufficient in order to obtain a (1−ϔ)(1-\epsilon)-competitive deterministic advice algorithm. Furthermore, for a large natural class of deterministic advice algorithms, we prove that Ω(log⁥log⁥log⁥n)\Omega(\log \log \log n) advice bits are required in order to improve on the 12\frac{1}{2}-competitiveness of the best deterministic online algorithm, while it is known that O(log⁥n)O(\log n) bits are sufficient. Last, we give a randomized online algorithm that uses cnc n random bits, for integers c≄1c \ge 1, and a competitive ratio that approaches 1−1e1-\frac{1}{e} very quickly as cc is increasing. For example if c=10c = 10, then the difference between 1−1e1-\frac{1}{e} and the achieved competitive ratio is less than 0.00020.0002

    Online Bin Packing with Advice

    Get PDF
    We consider the online bin packing problem under the advice complexity model where the 'online constraint' is relaxed and an algorithm receives partial information about the future requests. We provide tight upper and lower bounds for the amount of advice an algorithm needs to achieve an optimal packing. We also introduce an algorithm that, when provided with log n + o(log n) bits of advice, achieves a competitive ratio of 3/2 for the general problem. This algorithm is simple and is expected to find real-world applications. We introduce another algorithm that receives 2n + o(n) bits of advice and achieves a competitive ratio of 4/3 + {\epsilon}. Finally, we provide a lower bound argument that implies that advice of linear size is required for an algorithm to achieve a competitive ratio better than 9/8.Comment: 19 pages, 1 figure (2 subfigures
    • 

    corecore