30 research outputs found

    Finding subsets of positive measure

    Full text link
    An important theorem of geometric measure theory (first proved by Besicovitch and Davies for Euclidean space) says that every analytic set of non-zero ss-dimensional Hausdorff measure Hs\mathcal H^s contains a closed subset of non-zero (and indeed finite) Hs\mathcal H^s-measure. We investigate the question how hard it is to find such a set, in terms of the index set complexity, and in terms of the complexity of the parameter needed to define such a closed set. Among other results, we show that given a (lightface) Σ11\Sigma^1_1 set of reals in Cantor space, there is always a Π10(O)\Pi^0_1(\mathcal{O}) subset on non-zero Hs\mathcal H^s-measure definable from Kleene's O\mathcal O. On the other hand, there are Π20\Pi^0_2 sets of reals where no hyperarithmetic real can define a closed subset of non-zero measure.Comment: This is an extended journal version of the conference paper "The Strength of the Besicovitch--Davies Theorem". The final publication of that paper is available at Springer via http://dx.doi.org/10.1007/978-3-642-13962-8_2

    Irrationality exponent, Hausdorff dimension and effectivization

    Get PDF
    We generalize the classical theorem by Jarnik and Besicovitch on the irrationality exponents of real numbers and Hausdorff dimension and show that the two notions are independent. For any real number a greater than or equal to 2 and any non-negative real b be less than or equal to 2 / a, we show that there is a Cantor-like set with Hausdorff dimension equal to b such that, with respect to its uniform measure, almost all real numbers have irrationality exponent equal to a. We give an analogous result relating the irrationality exponent and the effective Hausdorff dimension of individual real numbers. We prove that there is a Cantor-like set such that, with respect to its uniform measure, almost all elements in the set have effective Hausdorff dimension equal to b and irrationality exponent equal to a. In each case, we obtain the desired set as a distinguished path in a tree of Cantor sets.Fil: Becher, Veronica Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; ArgentinaFil: Reimann, Jan. State University of Pennsylvania; Estados UnidosFil: Slaman, Theodore A.. University of California. Department of Mathematics; Estados Unido

    Claude Ambrose Rogers. 1 November 1920 — 5 December 2005

    Get PDF
    Claude Ambrose Rogers and his identical twin brother, Stephen Clifford, were born in Cambridge in 1920 and came from a long scientific heritage. Their great-great-grandfather, Davies Gilbert, was President of the Royal Society from 1827 to 1830; their father was a Fellow of the Society and distinguished for his work in tropical medicine. After attending boarding school at Berkhamsted with his twin brother from the age of 8 years, Ambrose, who had developed very different scientific interests from those of his father, entered University College London in 1938 to study mathematics. He completed the course in 1940 and graduated in 1941 with first-class honours, by which time the UK had been at war with Germany for two years. He joined the Applied Ballistics Branch of the Ministry of Supply in 1940, where he worked until 1945, apparently on calculations using radar data to direct anti-aircraft fire. However, this did not lead to research interests in applied mathematics, but rather to several areas of pure mathematics. Ambrose's PhD research was at Birkbeck College, London, under the supervision of L. S. Bosanquet and R. G. Cooke, his first paper being on the subject of geometry of numbers. Later, Rogers became known for his very wide interests in mathematics, including not only geometry of numbers but also Hausdorff measures, convexity and analytic sets, as described in this memoir. Ambrose was married in 1952 to Joan North, and they had two daughters, Jane and Petra, to form a happy family

    Computability Theory (hybrid meeting)

    Get PDF
    Over the last decade computability theory has seen many new and fascinating developments that have linked the subject much closer to other mathematical disciplines inside and outside of logic. This includes, for instance, work on enumeration degrees that has revealed deep and surprising relations to general topology, the work on algorithmic randomness that is closely tied to symbolic dynamics and geometric measure theory. Inside logic there are connections to model theory, set theory, effective descriptive set theory, computable analysis and reverse mathematics. In some of these cases the bridges to seemingly distant mathematical fields have yielded completely new proofs or even solutions of open problems in the respective fields. Thus, over the last decade, computability theory has formed vibrant and beneficial interactions with other mathematical fields. The goal of this workshop was to bring together researchers representing different aspects of computability theory to discuss recent advances, and to stimulate future work

    Maximal Averages and Packing of One Dimensional Sets

    Get PDF
    We discuss recent work of several authors on the Kakeya needle problem and other related problems involving nonexistence of small sets containing large families of one dimensional objects

    Restriction and kakeya problems of fourier analysis in vector spaces over finite fields

    Get PDF

    Polynomial Wolff axioms and Kakeya-type estimates in R4

    Get PDF
    We establish new linear and trilinear bounds for collections of tubes in R4 that satisfy the polynomial Wolff axioms. In brief, a collection of δ-tubes satisfies the Wolff axioms if not too many tubes can be contained in the δ-neighborhood of a plane. A collection of tubes satisfies the polynomial Wolff axioms if not too many tubes can be contained in the δ-neighborhood of a low degree algebraic variety. First, we prove that if a set of δ-3 tubes in R4 satisfies the polynomial Wolff axioms, then the union of the tubes must have volume at least δ1-1/28. We also prove a more technical statement which is analogous to a maximal function estimate at dimension 3+1/28. Second, we prove that if a collection of δ-3 tubes in R4 satisfies the polynomial Wolff axioms, and if most triples of intersecting tubes point in three linearly independent directions, then the union of the tubes must have volume at least δ3/4. Again, we also prove a slightly more technical statement which is analogous to a maximal function estimate at dimension 3+1/4. We conjecture that every Kakeya set satisfies the polynomial Wolff axioms, but we are unable to prove this. If our conjecture is correct, it implies a Kakeya maximal function estimate at dimension 3+1/28, and in particular this implies that every Kakeya set in R4 must have Hausdorff dimension at least 3+1/28. This would be an improvement over the current best bound of 3, which was established by Wolff in 1995
    corecore