562 research outputs found

    On the highly stable performance of loss-free optical burst switching networks

    Get PDF
    Increase of bandwidth demand in data networks, driven by the continuous growth of the Internet and the increase of bandwidth greedy applications, raise the issue of how to support all the bandwidth requirements in the near future. Three optical switching paradigms have been defined and are being investigated: Optical Circuit Switching (OCS); Optical Packet Switching (OPS); and Optical Burst Switching (OBS). Among these paradigms, OBS is seen as the most appropriate solution today. However, OBS suffers from high burst loss as a result of contention in the bufferless mode of operation. This issue was investigated by Coutelen et al., 2009 who proposed the loss-free CAROBS framework whereby signal convertors of the optical signal to the electrical domain ensure electrical buffering. Convertors increase the network price which must be minimized to reduce the installation and operating costs of the CAROBS framework. An analysis capturing convertor requirements, with respect to the number of merging flows and CAROBS node offered load, was carried out. We demonstrated the convertor location significance, which led to an additional investigation of the shared wavelength convertors scenario. Shared wavelength convertors significantly decrease the number of required convertors and show great promise for CAROBS. Based on this study we can design a CAROBS network to contain a combination of simple and complex nodes that include none or some convertors respectively, a vital feature of network throughput efficiency and cost

    How to enhance the efficiency of loss-less optical burst switching networks with the streamline effect

    Get PDF
    With the ongoing steady traffic increase in the Internet, the wavelength usage of the supporting optical networks is a critical network efficiency parameter. Therefore, this paper suggests a way how to efficiently and economically achieve this goal in the context of optical burst switching, a very promising technology that has been proposed to overcome the shortcomings of conventional WDM deployment, such as lack of fine bandwidth granularity in wavelength routing and electronic speed bottlenecks in the presence of bursty traffic. In order to mitigate the burst loss and achieve high network efficiency we adapt the loss-less paradigm defined by Coutelen et al. (2010), i.e., the CAROBS framework. In classical OBS networks, the streamline effect ensures a very low level of contention, i.e., efficient transmission, hence we define a routing guided only by the streamline effect. The resulting routing problem is formulated as an optimization model which is solved using a decomposition technique to increase the scalability of the solution process

    Simulation Model for OBS Contention Avoidance Routing Strategies

    Get PDF
    Abstract. Optical burst switching (OBS) provides a feasible paradigm for the next IP over optical network backbones. However, due to its bufferless nature, OBS efficiency can be reduced by resource contention leading to burst loss. Several methods have been proposed to address this problem, most of them relying on reactive mechanisms which increase the complexity of core nodes, hampering scalability. In this work we consider a preventive traffic engineering approach for contention resolution which provides source routing with the objective of minimizing contention at the transmission links considering only topological information. This paper presents a simulation model aimed at the evaluation of different offline routing strategies in terms of burst contention. The simulation model is used to compare the performance of different novel path selection strategies with the traditional shortest path routing approach. Results confirm that the proposed strategies are effective in reducing the overall blocking and the model is feasible for the proposed QoS evaluation

    Connection routing and configuration in optical burst switching networks

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    How far can we go with OBS networks

    Get PDF
    Optical Burst Switching (OBS) was proposed ten years ago as an alternative switching paradigm in order to overcome some of the drawbacks of Optical Circuit Switching (OCS). While OBS is no more necessarily perceived as a competitor to OCS, but more of a more adapted switching for networks with bursty and highly dynamic traffic, there is still a debate around OBS, i.e., how far an OBS network can go in terms of throughput with no or limited burst losses. This thesis attempts to answer this question by investigating how to devise an upper bound on the throughput of an OBS network, assuming no recourse to electrical buffering is made at any intermediate node. We investigate both the burst scheduling and routing issues, with a larger focus on routing in three directions: (i) exploration of weighted k -shortest paths, (ii) revisiting load balancing, (iii) examining tree decomposition. Simulations have been conducted to compare and evaluate each of the new ideas with adapted (with respect to throughput upper bounding) previously proposed routing algorithms on different network and traffic instances. A comparison of the best upper bound with lower bounds obtained under various assumptions is presente

    Quality of service in optical burst switching networks

    Get PDF
    Tese dout., Engenharia Electrónica e Computação, Universidade do Algarve, 2009Fundação para e Ciência e a Tecnologi

    Loss-free architectures in optical burst switched networks for a reliable and dynamic optical layer

    Get PDF
    For the last three decades, the optical fiber has been a quite systematic response to dimensioning issues in the Internet. Originally restricted to long haul networks, the optical network has gradually descended the network hierarchy to discard the bottlenecks. In the 90's, metropolitan networks became optical. Today, optical fibers are deployed in access networks and reach the users. In a near future, besides wireless access and local area networks, all networks in the network hierarchy may be made of fibers, in order to support current services (HDTV) and the emergence of new applications (3D-TV newly commercialized in USA). The deployment of such greedy applications will initiate an upward upgrade. The first step may be the Metropolitan Area Networks (MANs), not only because of the traffic growth, but also because of the variety of served applications, each with a specific traffic profile. The current optical layer is of mitigated efficiency, dealing with unforeseen events. The lack of reactivity is mainly due to the slow switching devices: any on-line decision of the optical layer is delayed by the configuration of the. devices. When the optical network has been extended in the MANs, a lot of efforts has been deployed to improve the reactivity of the optical layer. The Optical Circuit Switching paradigm (OCS) has been improved but it ultimately relies on off-line configuration of the optical devices. Optical Burst Switching (OBS) can be viewed as a highly flexible evolution of OCS, that operates five order of magnitude faster. Within this 'architecture, the loss-free guaranty can be abandoned in order to improve the reactivity of the optical layer. Indeed, reliability and reactivity appear as antagonists properties and getting closer to either of them mitigates the other. This thesis aims at proposing a solution to achieve reliable transmission over a dynamic optical layer. Focusing on OBS networks, our objective is to solve the contention issue without mitigating the reactivity. After the consideration of contention avoidance mechanisms with routing constraints similar as in OCS networks, we investigate the reactive solutions that intend to solve the contentions. None of the available contention resolution scheme can ensure the 100% efficiency that leads to loss-free transmission. An attractive solution is the recourse to electrical buffering, but it is notoriously disregarded because (1) it may highly impact the delays and (2) loss can occur due to buffer overflows. The efficiency of translucent architectures thus highly depends on the buffer availability, that can be improved by reducing the time spent in the buffers and the contention rate. We show that traffic grooming can highly reduce the emission delay, and consequently the buffer occupancy. In a first architecture, traffic grooming is enabled by a translucent core node architecture, capable to re-aggregate incoming bursts. The re-aggregation is mandatory to "de-groom" the bursts in the core network (i.e., to demultiplex the content of a burst). On the one hand, the re-aggregation highly reduces the loss probability, but on the other hand, it absorbs the benefits of traffic grooming. Finally, dynamic access to re-aggregation for contention resolution, despite the significant reduction of the contention rate, dramatically impacts the end-to-end delay and the memory requirement. We thus propose a second architecture, called CAROBS, that exploits traffic grooming in the optical domain. This framework is fully dynamic and can be used jointly with our translucent architecture that performs re-aggregation. As the (de)grooming operations do not involve re-aggregation, the translucent module can be restricted to contention resolution. As a result, the volume of data submitted to re-aggregation is drastically reduced and loss-free transmission can be reached with the same reactivity, end-to-end delay and memory requirement as a native OBS networ
    corecore