5,226 research outputs found

    GiAnt: stereoscopic-compliant multi-scale navigation in VEs

    Get PDF
    International audienceNavigation in multi-scale virtual environments (MSVE) requires the adjustment of the navigation parameters to ensure optimal navigation experiences at each level of scale. In particular, in immersive stereoscopic systems, e.g. when performing zoom-in and zoom-out operations, the navigation speed and the stereoscopic rendering parameters have to be adjusted accordingly. Although this adjustment can be done manually by the user, it can be complex, tedious and strongly depends on the virtual environment. In this work we propose a new multi-scale navigation technique named GiAnt (GIant/ANT) which automatically and seamlessly adjusts the navigation speed and the scale factor of the virtual environment based on the user's perceived navigation speed. The adjustment ensures an almost-constant perceived navigation speed while avoiding diplopia effects or diminished depth perception due to improper stereoscopic rendering configurations. The results from the conducted user evaluation shows that GiAnt is an efficient multi-scale navigation which minimizes the changes of the scale factor of the virtual environment compared to state-of-the-art multi-scale navigation techniques

    Assessment of a photogrammetric approach for urban DSM extraction from tri-stereoscopic satellite imagery

    Get PDF
    Built-up environments are extremely complex for 3D surface modelling purposes. The main distortions that hamper 3D reconstruction from 2D imagery are image dissimilarities, concealed areas, shadows, height discontinuities and discrepancies between smooth terrain and man-made features. A methodology is proposed to improve automatic photogrammetric extraction of an urban surface model from high resolution satellite imagery with the emphasis on strategies to reduce the effects of the cited distortions and to make image matching more robust. Instead of a standard stereoscopic approach, a digital surface model is derived from tri-stereoscopic satellite imagery. This is based on an extensive multi-image matching strategy that fully benefits from the geometric and radiometric information contained in the three images. The bundled triplet consists of an IKONOS along-track pair and an additional near-nadir IKONOS image. For the tri-stereoscopic study a densely built-up area, extending from the centre of Istanbul to the urban fringe, is selected. The accuracy of the model extracted from the IKONOS triplet, as well as the model extracted from only the along-track stereopair, are assessed by comparison with 3D check points and 3D building vector data

    Stereoscopic camera and viewing systems with undistorted depth presentation and reduced or eliminated erroneous acceleration and deceleration perceptions, or with perceptions produced or enhanced for special effects

    Get PDF
    Methods for providing stereoscopic image presentation and stereoscopic configurations using stereoscopic viewing systems having converged or parallel cameras may be set up to reduce or eliminate erroneously perceived accelerations and decelerations by proper selection of parameters, such as an image magnification factor, q, and intercamera distance, 2w. For converged cameras, q is selected to be equal to Ve - qwl = 0, where V is the camera distance, e is half the interocular distance of an observer, w is half the intercamera distance, and l is the actual distance from the first nodal point of each camera to the convergence point, and for parallel cameras, q is selected to be equal to e/w. While converged cameras cannot be set up to provide fully undistorted three-dimensional views, they can be set up to provide a linear relationship between real and apparent depth and thus minimize erroneously perceived accelerations and decelerations for three sagittal planes, x = -w, x = 0, and x = +w which are indicated to the observer. Parallel cameras can be set up to provide fully undistorted three-dimensional views by controlling the location of the observer and by magnification and shifting of left and right images. In addition, the teachings of this disclosure can be used to provide methods of stereoscopic image presentation and stereoscopic camera configurations to produce a nonlinear relation between perceived and real depth, and erroneously produce or enhance perceived accelerations and decelerations in order to provide special effects for entertainment, training, or educational purposes

    Conceptual design study for a teleoperator visual system, phase 2

    Get PDF
    An analysis of the concept for the hybrid stereo-monoscopic television visual system is reported. The visual concept is described along with the following subsystems: illumination, deployment/articulation, telecommunications, visual displays, and the controls and display station

    Multi-touch 3D Exploratory Analysis of Ocean Flow Models

    Get PDF
    Modern ocean flow simulations are generating increasingly complex, multi-layer 3D ocean flow models. However, most researchers are still using traditional 2D visualizations to visualize these models one slice at a time. Properly designed 3D visualization tools can be highly effective for revealing the complex, dynamic flow patterns and structures present in these models. However, the transition from visualizing ocean flow patterns in 2D to 3D presents many challenges, including occlusion and depth ambiguity. Further complications arise from the interaction methods required to navigate, explore, and interact with these 3D datasets. We present a system that employs a combination of stereoscopic rendering, to best reveal and illustrate 3D structures and patterns, and multi-touch interaction, to allow for natural and efficient navigation and manipulation within the 3D environment. Exploratory visual analysis is facilitated through the use of a highly-interactive toolset which leverages a smart particle system. Multi-touch gestures allow users to quickly position dye emitting tools within the 3D model. Finally, we illustrate the potential applications of our system through examples of real world significance

    Dynamir: optical manipulations using dynamic mirror brushes

    Get PDF
    Mirror surfaces are part of our everyday life. Among them, curved mirrors are used to enhance our perception of the physical space, e.g., convex mirrors are used to increase our field of view in the street, and concave mirrors are used to zoom in on parts our face in the bathroom. In this paper, we investigate the opportunities opened when these mirrors are made dynamic, so that their effects can be modulated to adapt to the environment or to a user's actions. We introduce the concept of dynamic mirror brushes that can be moved around a mirror surface. We describe how these brushes can be used for various optical manipulations of the physical space. We also present an implementation using a flexible mirror sheet and three scenarios that demonstrate some of the interaction opportunities

    Visual Comfort Assessment for Stereoscopic Image Retargeting

    Full text link
    In recent years, visual comfort assessment (VCA) for 3D/stereoscopic content has aroused extensive attention. However, much less work has been done on the perceptual evaluation of stereoscopic image retargeting. In this paper, we first build a Stereoscopic Image Retargeting Database (SIRD), which contains source images and retargeted images produced by four typical stereoscopic retargeting methods. Then, the subjective experiment is conducted to assess four aspects of visual distortion, i.e. visual comfort, image quality, depth quality and the overall quality. Furthermore, we propose a Visual Comfort Assessment metric for Stereoscopic Image Retargeting (VCA-SIR). Based on the characteristics of stereoscopic retargeted images, the proposed model introduces novel features like disparity range, boundary disparity as well as disparity intensity distribution into the assessment model. Experimental results demonstrate that VCA-SIR can achieve high consistency with subjective perception

    Dynamics of Attention in Depth: Evidence from Mutli-Element Tracking

    Full text link
    The allocation of attention in depth is examined using a multi-element tracking paradigm. Observers are required to track a predefined subset of from two to eight elements in displays containing up to sixteen identical moving elements. We first show that depth cues, such as binocular disparity and occlusion through T-junctions, improve performance in a multi-element tracking task in the case where element boundaries are allowed to intersect in the depiction of motion in a single fronto-parallel plane. We also show that the allocation of attention across two perceptually distinguishable planar surfaces either fronto-parallel or receding at a slanting angle and defined by coplanar elements, is easier than allocation of attention within a single surface. The same result was not found when attention was required to be deployed across items of two color populations rather than of a single color. Our results suggest that, when surface information does not suffice to distinguish between targets and distractors that are embedded in these surfaces, division of attention across two surfaces aids in tracking moving targets.National Science Foundation (IRI-94-01659); Office of Naval Research (N00014-95-1-0409, N00014-95-1-0657
    • …
    corecore