869 research outputs found

    Approximation Algorithms for Generalized MST and TSP in Grid Clusters

    Full text link
    We consider a special case of the generalized minimum spanning tree problem (GMST) and the generalized travelling salesman problem (GTSP) where we are given a set of points inside the integer grid (in Euclidean plane) where each grid cell is 1×11 \times 1. In the MST version of the problem, the goal is to find a minimum tree that contains exactly one point from each non-empty grid cell (cluster). Similarly, in the TSP version of the problem, the goal is to find a minimum weight cycle containing one point from each non-empty grid cell. We give a (1+42+ϵ)(1+4\sqrt{2}+\epsilon) and (1.5+82+ϵ)(1.5+8\sqrt{2}+\epsilon)-approximation algorithm for these two problems in the described setting, respectively. Our motivation is based on the problem posed in [7] for a constant approximation algorithm. The authors designed a PTAS for the more special case of the GMST where non-empty cells are connected end dense enough. However, their algorithm heavily relies on this connectivity restriction and is unpractical. Our results develop the topic further

    Solving weighted and counting variants of connectivity problems parameterized by treewidth deterministically in single exponential time

    Full text link
    It is well known that many local graph problems, like Vertex Cover and Dominating Set, can be solved in 2^{O(tw)}|V|^{O(1)} time for graphs G=(V,E) with a given tree decomposition of width tw. However, for nonlocal problems, like the fundamental class of connectivity problems, for a long time we did not know how to do this faster than tw^{O(tw)}|V|^{O(1)}. Recently, Cygan et al. (FOCS 2011) presented Monte Carlo algorithms for a wide range of connectivity problems running in time $c^{tw}|V|^{O(1)} for a small constant c, e.g., for Hamiltonian Cycle and Steiner tree. Naturally, this raises the question whether randomization is necessary to achieve this runtime; furthermore, it is desirable to also solve counting and weighted versions (the latter without incurring a pseudo-polynomial cost in terms of the weights). We present two new approaches rooted in linear algebra, based on matrix rank and determinants, which provide deterministic c^{tw}|V|^{O(1)} time algorithms, also for weighted and counting versions. For example, in this time we can solve the traveling salesman problem or count the number of Hamiltonian cycles. The rank-based ideas provide a rather general approach for speeding up even straightforward dynamic programming formulations by identifying "small" sets of representative partial solutions; we focus on the case of expressing connectivity via sets of partitions, but the essential ideas should have further applications. The determinant-based approach uses the matrix tree theorem for deriving closed formulas for counting versions of connectivity problems; we show how to evaluate those formulas via dynamic programming.Comment: 36 page

    Survivable Networks, Linear Programming Relaxations and the Parsimonious Property

    Get PDF
    We consider the survivable network design problem - the problem of designing, at minimum cost, a network with edge-connectivity requirements. As special cases, this problem encompasses the Steiner tree problem, the traveling salesman problem and the k-connected network design problem. We establish a property, referred to as the parsimonious property, of the linear programming (LP) relaxation of a classical formulation for the problem. The parsimonious property has numerous consequences. For example, we derive various structural properties of these LP relaxations, we present some algorithmic improvements and we perform tight worstcase analyses of two heuristics for the survivable network design problem

    The Geometric Maximum Traveling Salesman Problem

    Full text link
    We consider the traveling salesman problem when the cities are points in R^d for some fixed d and distances are computed according to geometric distances, determined by some norm. We show that for any polyhedral norm, the problem of finding a tour of maximum length can be solved in polynomial time. If arithmetic operations are assumed to take unit time, our algorithms run in time O(n^{f-2} log n), where f is the number of facets of the polyhedron determining the polyhedral norm. Thus for example we have O(n^2 log n) algorithms for the cases of points in the plane under the Rectilinear and Sup norms. This is in contrast to the fact that finding a minimum length tour in each case is NP-hard. Our approach can be extended to the more general case of quasi-norms with not necessarily symmetric unit ball, where we get a complexity of O(n^{2f-2} log n). For the special case of two-dimensional metrics with f=4 (which includes the Rectilinear and Sup norms), we present a simple algorithm with O(n) running time. The algorithm does not use any indirect addressing, so its running time remains valid even in comparison based models in which sorting requires Omega(n \log n) time. The basic mechanism of the algorithm provides some intuition on why polyhedral norms allow fast algorithms. Complementing the results on simplicity for polyhedral norms, we prove that for the case of Euclidean distances in R^d for d>2, the Maximum TSP is NP-hard. This sheds new light on the well-studied difficulties of Euclidean distances.Comment: 24 pages, 6 figures; revised to appear in Journal of the ACM. (clarified some minor points, fixed typos

    Discrete Particle Swarm Optimization for the minimum labelling Steiner tree problem

    Get PDF
    Particle Swarm Optimization is an evolutionary method inspired by the social behaviour of individuals inside swarms in nature. Solutions of the problem are modelled as members of the swarm which fly in the solution space. The evolution is obtained from the continuous movement of the particles that constitute the swarm submitted to the effect of the inertia and the attraction of the members who lead the swarm. This work focuses on a recent Discrete Particle Swarm Optimization for combinatorial optimization, called Jumping Particle Swarm Optimization. Its effectiveness is illustrated on the minimum labelling Steiner tree problem: given an undirected labelled connected graph, the aim is to find a spanning tree covering a given subset of nodes, whose edges have the smallest number of distinct labels

    Optimal Lower Bounds for Universal and Differentially Private Steiner Tree and TSP

    Get PDF
    Given a metric space on n points, an {\alpha}-approximate universal algorithm for the Steiner tree problem outputs a distribution over rooted spanning trees such that for any subset X of vertices containing the root, the expected cost of the induced subtree is within an {\alpha} factor of the optimal Steiner tree cost for X. An {\alpha}-approximate differentially private algorithm for the Steiner tree problem takes as input a subset X of vertices, and outputs a tree distribution that induces a solution within an {\alpha} factor of the optimal as before, and satisfies the additional property that for any set X' that differs in a single vertex from X, the tree distributions for X and X' are "close" to each other. Universal and differentially private algorithms for TSP are defined similarly. An {\alpha}-approximate universal algorithm for the Steiner tree problem or TSP is also an {\alpha}-approximate differentially private algorithm. It is known that both problems admit O(logn)-approximate universal algorithms, and hence O(log n)-approximate differentially private algorithms as well. We prove an {\Omega}(logn) lower bound on the approximation ratio achievable for the universal Steiner tree problem and the universal TSP, matching the known upper bounds. Our lower bound for the Steiner tree problem holds even when the algorithm is allowed to output a more general solution of a distribution on paths to the root.Comment: 14 page

    Equidistribution of Point Sets for the Traveling Salesman and Related Problems

    Get PDF
    Given a set S of n points in the unit square [0, 1)2, an optimal traveling salesman tour of S is a tour of S that is of minimum length. A worst-case point set for the Traveling Salesman Problem in the unit square is a point set S(n) whose optimal traveling salesman tour achieves the maximum possible length among all point sets S C [0, 1)2, where JSI = n. An open problem is to determine the structure of S(n). We show that for any rectangle R contained in [0, 1 F, the number of points in S(n) n R is asymptotic to n times the area of R. One corollary of this result is an 0( n log n) approximation algorithm for the worst-case Euclidean TSP. Analogous results are proved for the minimum spanning tree, minimum-weight matching, and rectilinear Steiner minimum tree. These equidistribution theorems are the first results concerning the structure of worst-case point sets like S(n)
    corecore