5,419 research outputs found

    Relaxing the Irrevocability Requirement for Online Graph Algorithms

    Get PDF
    Online graph problems are considered in models where the irrevocability requirement is relaxed. Motivated by practical examples where, for example, there is a cost associated with building a facility and no extra cost associated with doing it later, we consider the Late Accept model, where a request can be accepted at a later point, but any acceptance is irrevocable. Similarly, we also consider a Late Reject model, where an accepted request can later be rejected, but any rejection is irrevocable (this is sometimes called preemption). Finally, we consider the Late Accept/Reject model, where late accepts and rejects are both allowed, but any late reject is irrevocable. For Independent Set, the Late Accept/Reject model is necessary to obtain a constant competitive ratio, but for Vertex Cover the Late Accept model is sufficient and for Minimum Spanning Forest the Late Reject model is sufficient. The Matching problem has a competitive ratio of 2, but in the Late Accept/Reject model, its competitive ratio is 3/2

    Improved Approximation Algorithms for PRIZE-COLLECTING STEINER TREE and TSP

    Get PDF
    Abstract — We study the prize-collecting versions of the Steiner tree, traveling salesman, and stroll (a.k.a. PATH-TSP) problems (PCST, PCTSP, and PCS, respectively): given a graph (V, E) with costs on each edge and a penalty (a.k.a. prize) on each node, the goal is to find a tree (for PCST), cycle (for PCTSP), or stroll (for PCS) that minimizes the sum of the edge costs in the tree/cycle/stroll and the penalties of the nodes not spanned by it. In addition to being a useful theoretical tool for helping to solve other optimization problems, PCST has been applied fruitfully by AT&T to the optimization of real-world telecommunications networks. The most recent improvements for the first two problems, giving a 2-approximation algorithm for each, appeared first in 1992. (A 2-approximation for PCS appeared in 2003.) The natural linear programming (LP) relaxation of PCST has an integrality gap of 2, which has been a barrier to further improvements for this problem. We present (2 − ɛ)-approximation algorithms for all three problems, connected by a unified technique for improving prizecollecting algorithms that allows us to circumvent the integrality gap barrier. 1
    • …
    corecore