160,238 research outputs found

    Towards real-world complexity: an introduction to multiplex networks

    Full text link
    Many real-world complex systems are best modeled by multiplex networks of interacting network layers. The multiplex network study is one of the newest and hottest themes in the statistical physics of complex networks. Pioneering studies have proven that the multiplexity has broad impact on the system's structure and function. In this Colloquium paper, we present an organized review of the growing body of current literature on multiplex networks by categorizing existing studies broadly according to the type of layer coupling in the problem. Major recent advances in the field are surveyed and some outstanding open challenges and future perspectives will be proposed.Comment: 20 pages, 10 figure

    Information Flow Structure in Large-Scale Product Development Organizational Networks

    Get PDF
    In recent years, understanding the structure and function of complex networks has become the foundation for explaining many different real- world complex social, information, biological and technological phenomena. Techniques from statistical physics have been successfully applied to the analysis of these networks, and have uncovered surprising statistical structural properties that have also been shown to have a major effect on their functionality, dynamics, robustness, and fragility. This paper examines, for the first time, the statistical properties of strategically important complex organizational information-based networks -- networks of people engaged in distributed product development -- and discusses the significance of these properties in providing insight into ways of improving the strategic and operational decision-making of the organization. We show that the patterns of information flows that are at the heart of large-scale product development networks have properties that are like those displayed by information, biological and technological networks. We believe that our new analysis methodology and empirical results are also relevant to other organizational information-based human or nonhuman networks.Large-scale product development, socio-technical systems, information systems, social networks, Innovation, complex engineering systems, distributed problem solving

    Self-similarity of complex networks

    Full text link
    Complex networks have been studied extensively due to their relevance to many real systems as diverse as the World-Wide-Web (WWW), the Internet, energy landscapes, biological and social networks \cite{ab-review,mendes,vespignani,newman,amaral}. A large number of real networks are called ``scale-free'' because they show a power-law distribution of the number of links per node \cite{ab-review,barabasi1999,faloutsos}. However, it is widely believed that complex networks are not {\it length-scale} invariant or self-similar. This conclusion originates from the ``small-world'' property of these networks, which implies that the number of nodes increases exponentially with the ``diameter'' of the network \cite{erdos,bollobas,milgram,watts}, rather than the power-law relation expected for a self-similar structure. Nevertheless, here we present a novel approach to the analysis of such networks, revealing that their structure is indeed self-similar. This result is achieved by the application of a renormalization procedure which coarse-grains the system into boxes containing nodes within a given "size". Concurrently, we identify a power-law relation between the number of boxes needed to cover the network and the size of the box defining a finite self-similar exponent. These fundamental properties, which are shown for the WWW, social, cellular and protein-protein interaction networks, help to understand the emergence of the scale-free property in complex networks. They suggest a common self-organization dynamics of diverse networks at different scales into a critical state and in turn bring together previously unrelated fields: the statistical physics of complex networks with renormalization group, fractals and critical phenomena.Comment: 28 pages, 12 figures, more informations at http://www.jamlab.or

    Statistical Proof and Theories of Discrimination

    Get PDF
    We live in a tightly knit world. Our emotions, desires, perceptions and decisions are interlinked in our interactions with others. We are constantly influencing our surroundings and being influenced by others. In this thesis, we unfold some aspects of social and economical interactions by studying empirical datasets. We project these interactions into a network representation to gain insights on how socio-economic systems form and function and how they change over time. Specifically, this thesis is centered on four main questions: How do the means of communication shape our social network structures? How can we uncover the underlying network of interests from massive observational data? How does a crisis spread in a real financial network? How do the dynamics of interaction influence spreading processes in networks? We use a variety of methods from physics, psychology, sociology, and economics as well as computational, mathematical and statistical analysis to address these questions

    Network analysis of named entity co-occurrences in written texts

    Full text link
    The use of methods borrowed from statistics and physics to analyze written texts has allowed the discovery of unprecedent patterns of human behavior and cognition by establishing links between models features and language structure. While current models have been useful to unveil patterns via analysis of syntactical and semantical networks, only a few works have probed the relevance of investigating the structure arising from the relationship between relevant entities such as characters, locations and organizations. In this study, we represent entities appearing in the same context as a co-occurrence network, where links are established according to a null model based on random, shuffled texts. Computational simulations performed in novels revealed that the proposed model displays interesting topological features, such as the small world feature, characterized by high values of clustering coefficient. The effectiveness of our model was verified in a practical pattern recognition task in real networks. When compared with traditional word adjacency networks, our model displayed optimized results in identifying unknown references in texts. Because the proposed representation plays a complementary role in characterizing unstructured documents via topological analysis of named entities, we believe that it could be useful to improve the characterization of written texts (and related systems), specially if combined with traditional approaches based on statistical and deeper paradigms
    • 

    corecore