41,625 research outputs found

    Programmable interactions with biomimetic DNA linkers at fluid membranes and interfaces

    Full text link
    At the heart of the structured architecture and complex dynamics of biological systems are specific and timely interactions operated by biomolecules. In many instances, biomolecular agents are spatially confined to flexible lipid membranes where, among other functions, they control cell adhesion, motility and tissue formation. Besides being central to several biological processes, \emph{multivalent interactions} mediated by reactive linkers confined to deformable substrates underpin the design of synthetic-biological platforms and advanced biomimetic materials. Here we review recent advances on the experimental study and theoretical modelling of a heterogeneous class of biomimetic systems in which synthetic linkers mediate multivalent interactions between fluid and deformable colloidal units, including lipid vesicles and emulsion droplets. Linkers are often prepared from synthetic DNA nanostructures, enabling full programmability of the thermodynamic and kinetic properties of their mutual interactions. The coupling of the statistical effects of multivalent interactions with substrate fluidity and deformability gives rise to a rich emerging phenomenology that, in the context of self-assembled soft materials, has been shown to produce exotic phase behaviour, stimuli-responsiveness, and kinetic programmability of the self-assembly process. Applications to (synthetic) biology will also be reviewed.Comment: 63 pages, revie

    Modelling chemotaxis of microswimmers: from individual to collective behavior

    Full text link
    We discuss recent progress in the theoretical description of chemotaxis by coupling the diffusion equation of a chemical species to equations describing the motion of sensing microorganisms. In particular, we discuss models for autochemotaxis of a single microorganism which senses its own secretion leading to phenomena such as self-localization and self-avoidance. For two heterogeneous particles, chemotactic coupling can lead to predator-prey behavior including chase and escape phenomena, and to the formation of active molecules, where motility spontaneously emerges when the particles approach each other. We close this review with some remarks on the collective behavior of many particles where chemotactic coupling induces patterns involving clusters, spirals or traveling waves.Comment: to appear as a contribution to the book "Chemical kinetics beyond the textbook

    Pair Interaction Potentials of Colloids by Extrapolation of Confocal Microscopy Measurements of Collective Structure

    Full text link
    A method for measuring the pair interaction potential between colloidal particles by extrapolation measurement of collective structure to infinite dilution is presented and explored using simulation and experiment. The method is particularly well suited to systems in which the colloid is fluorescent and refractive index matched with the solvent. The method involves characterizing the potential of mean force between colloidal particles in suspension by measurement of the radial distribution function using 3D direct visualization. The potentials of mean force are extrapolated to infinite dilution to yield an estimate of the pair interaction potential, U(r)U(r). We use Monte Carlo (MC) simulation to test and establish our methodology as well as to explore the effects of polydispersity on the accuracy. We use poly-12-hydroxystearic acid-stabilized poly(methyl methacrylate) (PHSA-PMMA) particles dispersed in the solvent dioctyl phthalate (DOP) to test the method and assess its accuracy for three different repulsive systems for which the range has been manipulated by addition of electrolyte.Comment: 35 pages, 14 figure

    Pair Interaction Potentials of Colloids by Extrapolation of Confocal Microscopy Measurements of Collective Structure

    Full text link
    A method for measuring the pair interaction potential between colloidal particles by extrapolation measurement of collective structure to infinite dilution is presented and explored using simulation and experiment. The method is particularly well suited to systems in which the colloid is fluorescent and refractive index matched with the solvent. The method involves characterizing the potential of mean force between colloidal particles in suspension by measurement of the radial distribution function using 3D direct visualization. The potentials of mean force are extrapolated to infinite dilution to yield an estimate of the pair interaction potential, U(r)U(r). We use Monte Carlo (MC) simulation to test and establish our methodology as well as to explore the effects of polydispersity on the accuracy. We use poly-12-hydroxystearic acid-stabilized poly(methyl methacrylate) (PHSA-PMMA) particles dispersed in the solvent dioctyl phthalate (DOP) to test the method and assess its accuracy for three different repulsive systems for which the range has been manipulated by addition of electrolyte.Comment: 35 pages, 14 figure

    Modular Self-Reconfigurable Robot Systems

    Get PDF
    The field of modular self-reconfigurable robotic systems addresses the design, fabrication, motion planning, and control of autonomous kinematic machines with variable morphology. Modular self-reconfigurable systems have the promise of making significant technological advances to the field of robotics in general. Their promise of high versatility, high value, and high robustness may lead to a radical change in automation. Currently, a number of researchers have been addressing many of the challenges. While some progress has been made, it is clear that many challenges still exist. By illustrating several of the outstanding issues as grand challenges that have been collaboratively written by a large number of researchers in this field, this article has shown several of the key directions for the future of this growing fiel

    Negative Differential Resistance, Memory and Reconfigurable Logic Functions based on Monolayer Devices derived from Gold Nanoparticles Functionalized with Electro-polymerizable Thiophene-EDOT Units

    Get PDF
    We report on hybrid memristive devices made of a network of gold nanoparticles (10 nm diameter) functionalized by tailored 3,4(ethylenedioxy)thiophene (TEDOT) molecules, deposited between two planar electrodes with nanometer and micrometer gaps (100 nm to 10 um apart), and electropolymerized in situ to form a monolayer film of conjugated polymer with embedded gold nanoparticles (AuNPs). Electrical properties of these films exhibit two interesting behaviors: (i) a NDR (negative differential resistance) behavior with a peak/valley ratio up to 17, and (ii) a memory behavior with an ON/OFF current ratio of about 1E3 to 1E4. A careful study of the switching dynamics and programming voltage window is conducted demonstrating a non-volatile memory. The data retention of the ON and OFF states is stable (tested up to 24h), well controlled by the voltage and preserved when repeating the switching cycles (800 in this study). We demonstrate reconfigurable Boolean functions in multiterminal connected NP molecule devices.Comment: Full manuscript, figures and supporting information, J. Phys. Chem. C, on line, asap (2017
    • …
    corecore