53,513 research outputs found

    Towards engineering ontologies for cognitive profiling of agents on the semantic web

    Get PDF
    Research shows that most agent-based collaborations suffer from lack of flexibility. This is due to the fact that most agent-based applications assume pre-defined knowledge of agents’ capabilities and/or neglect basic cognitive and interactional requirements in multi-agent collaboration. The highlight of this paper is that it brings cognitive models (inspired from cognitive sciences and HCI) proposing architectural and knowledge-based requirements for agents to structure ontological models for cognitive profiling in order to increase cognitive awareness between themselves, which in turn promotes flexibility, reusability and predictability of agent behavior; thus contributing towards minimizing cognitive overload incurred on humans. The semantic web is used as an action mediating space, where shared knowledge base in the form of ontological models provides affordances for improving cognitive awareness

    An agent-based implementation of hidden Markov models for gas turbine condition monitoring

    Get PDF
    This paper considers the use of a multi-agent system (MAS) incorporating hidden Markov models (HMMs) for the condition monitoring of gas turbine (GT) engines. Hidden Markov models utilizing a Gaussian probability distribution are proposed as an anomaly detection tool for gas turbines components. The use of this technique is shown to allow the modeling of the dynamics of GTs despite a lack of high frequency data. This allows the early detection of developing faults and avoids costly outages due to asset failure. These models are implemented as part of a MAS, using a proposed extension of an established power system ontology, for fault detection of gas turbines. The multi-agent system is shown to be applicable through a case study and comparison to an existing system utilizing historic data from a combined-cycle gas turbine plant provided by an industrial partner

    Discovering Beaten Paths in Collaborative Ontology-Engineering Projects using Markov Chains

    Full text link
    Biomedical taxonomies, thesauri and ontologies in the form of the International Classification of Diseases (ICD) as a taxonomy or the National Cancer Institute Thesaurus as an OWL-based ontology, play a critical role in acquiring, representing and processing information about human health. With increasing adoption and relevance, biomedical ontologies have also significantly increased in size. For example, the 11th revision of the ICD, which is currently under active development by the WHO contains nearly 50,000 classes representing a vast variety of different diseases and causes of death. This evolution in terms of size was accompanied by an evolution in the way ontologies are engineered. Because no single individual has the expertise to develop such large-scale ontologies, ontology-engineering projects have evolved from small-scale efforts involving just a few domain experts to large-scale projects that require effective collaboration between dozens or even hundreds of experts, practitioners and other stakeholders. Understanding how these stakeholders collaborate will enable us to improve editing environments that support such collaborations. We uncover how large ontology-engineering projects, such as the ICD in its 11th revision, unfold by analyzing usage logs of five different biomedical ontology-engineering projects of varying sizes and scopes using Markov chains. We discover intriguing interaction patterns (e.g., which properties users subsequently change) that suggest that large collaborative ontology-engineering projects are governed by a few general principles that determine and drive development. From our analysis, we identify commonalities and differences between different projects that have implications for project managers, ontology editors, developers and contributors working on collaborative ontology-engineering projects and tools in the biomedical domain.Comment: Published in the Journal of Biomedical Informatic

    On relating functional modeling approaches: abstracting functional models from behavioral models

    Get PDF
    This paper presents a survey of functional modeling approaches and describes a strategy to establish functional knowledge exchange between them. This survey is focused on a comparison of function meanings and representations. It is argued that functions represented as input-output flow transformations correspond to behaviors in the approaches that characterize functions as intended behaviors. Based on this result a strategy is presented to relate the different meanings of function between the approaches, establishing functional knowledge exchange between them. It is shown that this strategy is able to preserve more functional information than the functional knowledge exchange methodology of Kitamura, Mizoguchi, and co-workers. The strategy proposed here consists of two steps. In step one, operation-on-flow functions are translated into behaviors. In step two, intended behavior functions are derived from behaviors. The two-step strategy and its benefits are demonstrated by relating functional models of a power screwdriver between methodologies

    A Semantic-Based Information Management System to Support Innovative Product Design

    Get PDF
    International competition and the rapidly global economy, unified by improved communication and transportation, offer to the consumers an enormous choice of goods and services. The result is that companies now require quality, value, time to market and innovation to be successful in order to win the increasing competition. In the engineering sector this is traduced in need of optimization of the design process and in maximization of re-use of data and knowledge already existing in the company. The “SIMI-Pro” (Semantic Information Management system for Innovative Product design) system addresses specific deficiencies in the conceptual phase of product design when knowledge management, if applied, is often sectorial. Its main contribution is in allowing easy, fast and centralized collection of data from multiple sources and in supporting the retrieval and re-use of a wide range of data that will help stylists and engineers shortening the production cycle. SIMI-Pro will be one of the first prototypes to base its information management and its knowledge sharing system on process ontology and it will demonstrate how the use of centralized network systems, coupled with Semantic Web technologies, can improve inter-working activities and interdisciplinary knowledge sharing
    corecore