480 research outputs found

    The stable roommates problem with globally-ranked pairs

    Get PDF
    We introduce a restriction of the stable roommates problem in which roommate pairs are ranked globally. In contrast to the unrestricted problem, weakly stable matchings are guaranteed to exist, and additionally, they can be found in polynomial time. However, it is still the case that strongly stable matchings may not exist, and so we consider the complexity of finding weakly stable matchings with various desirable properties. In particular, we present a polynomial-time algorithm to find a rank-maximal (weakly stable) matching. This is the first generalization of an algorithm due to [Irving et al. 06] to a nonbipartite setting. Also, we describe several hardness results in an even more restricted setting for each of the problems of finding weakly stable matchings that are of maximum size, are egalitarian, have minimum regret, and admit the minimum number of weakly blocking pairs

    Locally Stable Marriage with Strict Preferences

    Full text link
    We study stable matching problems with locality of information and control. In our model, each agent is a node in a fixed network and strives to be matched to another agent. An agent has a complete preference list over all other agents it can be matched with. Agents can match arbitrarily, and they learn about possible partners dynamically based on their current neighborhood. We consider convergence of dynamics to locally stable matchings -- states that are stable with respect to their imposed information structure in the network. In the two-sided case of stable marriage in which existence is guaranteed, we show that the existence of a path to stability becomes NP-hard to decide. This holds even when the network exists only among one partition of agents. In contrast, if one partition has no network and agents remember a previous match every round, a path to stability is guaranteed and random dynamics converge with probability 1. We characterize this positive result in various ways. For instance, it holds for random memory and for cache memory with the most recent partner, but not for cache memory with the best partner. Also, it is crucial which partition of the agents has memory. Finally, we present results for centralized computation of locally stable matchings, i.e., computing maximum locally stable matchings in the two-sided case and deciding existence in the roommates case.Comment: Conference version in ICALP 2013; to appear in SIAM J. Disc Mat

    Stable Marriage with Multi-Modal Preferences

    Full text link
    We introduce a generalized version of the famous Stable Marriage problem, now based on multi-modal preference lists. The central twist herein is to allow each agent to rank its potentially matching counterparts based on more than one "evaluation mode" (e.g., more than one criterion); thus, each agent is equipped with multiple preference lists, each ranking the counterparts in a possibly different way. We introduce and study three natural concepts of stability, investigate their mutual relations and focus on computational complexity aspects with respect to computing stable matchings in these new scenarios. Mostly encountering computational hardness (NP-hardness), we can also spot few islands of tractability and make a surprising connection to the \textsc{Graph Isomorphism} problem

    Stable Roommate Problem with Diversity Preferences

    Full text link
    In the multidimensional stable roommate problem, agents have to be allocated to rooms and have preferences over sets of potential roommates. We study the complexity of finding good allocations of agents to rooms under the assumption that agents have diversity preferences [Bredereck et al., 2019]: each agent belongs to one of the two types (e.g., juniors and seniors, artists and engineers), and agents' preferences over rooms depend solely on the fraction of agents of their own type among their potential roommates. We consider various solution concepts for this setting, such as core and exchange stability, Pareto optimality and envy-freeness. On the negative side, we prove that envy-free, core stable or (strongly) exchange stable outcomes may fail to exist and that the associated decision problems are NP-complete. On the positive side, we show that these problems are in FPT with respect to the room size, which is not the case for the general stable roommate problem. Moreover, for the classic setting with rooms of size two, we present a linear-time algorithm that computes an outcome that is core and exchange stable as well as Pareto optimal. Many of our results for the stable roommate problem extend to the stable marriage problem.Comment: accepted to IJCAI'2

    Matching Dynamics with Constraints

    Full text link
    We study uncoordinated matching markets with additional local constraints that capture, e.g., restricted information, visibility, or externalities in markets. Each agent is a node in a fixed matching network and strives to be matched to another agent. Each agent has a complete preference list over all other agents it can be matched with. However, depending on the constraints and the current state of the game, not all possible partners are available for matching at all times. For correlated preferences, we propose and study a general class of hedonic coalition formation games that we call coalition formation games with constraints. This class includes and extends many recently studied variants of stable matching, such as locally stable matching, socially stable matching, or friendship matching. Perhaps surprisingly, we show that all these variants are encompassed in a class of "consistent" instances that always allow a polynomial improvement sequence to a stable state. In addition, we show that for consistent instances there always exists a polynomial sequence to every reachable state. Our characterization is tight in the sense that we provide exponential lower bounds when each of the requirements for consistency is violated. We also analyze matching with uncorrelated preferences, where we obtain a larger variety of results. While socially stable matching always allows a polynomial sequence to a stable state, for other classes different additional assumptions are sufficient to guarantee the same results. For the problem of reaching a given stable state, we show NP-hardness in almost all considered classes of matching games.Comment: Conference Version in WINE 201

    Popular Matchings

    Get PDF

    On Using Matching Theory to Understand P2P Network Design

    Get PDF
    This paper aims to provide insight into stability of collaboration choices in P2P networks. We study networks where exchanges between nodes are driven by the desire to receive the best service available. This is the case for most existing P2P networks. We explore an evolution model derived from stable roommates theory that accounts for heterogeneity between nodes. We show that most P2P applications can be modeled using stable matching theory. This is the case whenever preference lists can be deduced from the exchange policy. In many cases, the preferences lists are characterized by an interesting acyclic property. We show that P2P networks with acyclic preferences possess a unique stable state with good convergence properties
    corecore