494 research outputs found

    A Simple Proof of Maxwell Saturation for Coupled Scalar Recursions

    Full text link
    Low-density parity-check (LDPC) convolutional codes (or spatially-coupled codes) were recently shown to approach capacity on the binary erasure channel (BEC) and binary-input memoryless symmetric channels. The mechanism behind this spectacular performance is now called threshold saturation via spatial coupling. This new phenomenon is characterized by the belief-propagation threshold of the spatially-coupled ensemble increasing to an intrinsic noise threshold defined by the uncoupled system. In this paper, we present a simple proof of threshold saturation that applies to a wide class of coupled scalar recursions. Our approach is based on constructing potential functions for both the coupled and uncoupled recursions. Our results actually show that the fixed point of the coupled recursion is essentially determined by the minimum of the uncoupled potential function and we refer to this phenomenon as Maxwell saturation. A variety of examples are considered including the density-evolution equations for: irregular LDPC codes on the BEC, irregular low-density generator matrix codes on the BEC, a class of generalized LDPC codes with BCH component codes, the joint iterative decoding of LDPC codes on intersymbol-interference channels with erasure noise, and the compressed sensing of random vectors with i.i.d. components.Comment: This article is an extended journal version of arXiv:1204.5703 and has now been accepted to the IEEE Transactions on Information Theory. This version adds additional explanation for some details and also corrects a number of small typo

    Density Evolution for Asymmetric Memoryless Channels

    Full text link
    Density evolution is one of the most powerful analytical tools for low-density parity-check (LDPC) codes and graph codes with message passing decoding algorithms. With channel symmetry as one of its fundamental assumptions, density evolution (DE) has been widely and successfully applied to different channels, including binary erasure channels, binary symmetric channels, binary additive white Gaussian noise channels, etc. This paper generalizes density evolution for non-symmetric memoryless channels, which in turn broadens the applications to general memoryless channels, e.g. z-channels, composite white Gaussian noise channels, etc. The central theorem underpinning this generalization is the convergence to perfect projection for any fixed size supporting tree. A new iterative formula of the same complexity is then presented and the necessary theorems for the performance concentration theorems are developed. Several properties of the new density evolution method are explored, including stability results for general asymmetric memoryless channels. Simulations, code optimizations, and possible new applications suggested by this new density evolution method are also provided. This result is also used to prove the typicality of linear LDPC codes among the coset code ensemble when the minimum check node degree is sufficiently large. It is shown that the convergence to perfect projection is essential to the belief propagation algorithm even when only symmetric channels are considered. Hence the proof of the convergence to perfect projection serves also as a completion of the theory of classical density evolution for symmetric memoryless channels.Comment: To appear in the IEEE Transactions on Information Theor

    Spatially-Coupled Precoded Rateless Codes

    Full text link
    Raptor codes are rateless codes that achieve the capacity on the binary erasure channels. However the maximum degree of optimal output degree distribution is unbounded. This leads to a computational complexity problem both at encoders and decoders. Aref and Urbanke investigated the potential advantage of universal achieving-capacity property of proposed spatially-coupled (SC) low-density generator matrix (LDGM) codes. However the decoding error probability of SC-LDGM codes is bounded away from 0. In this paper, we investigate SC-LDGM codes concatenated with SC low-density parity-check codes. The proposed codes can be regarded as SC Hsu-Anastasopoulos rateless codes. We derive a lower bound of the asymptotic overhead from stability analysis for successful decoding by density evolution. The numerical calculation reveals that the lower bound is tight. We observe that with a sufficiently large number of information bits, the asymptotic overhead and the decoding error rate approach 0 with bounded maximum degree

    Nonbinary Spatially-Coupled LDPC Codes on the Binary Erasure Channel

    Get PDF
    We analyze the asymptotic performance of nonbinary spatially-coupled low-density parity-check (SC-LDPC) codes built on the general linear group, when the transmission takes place over the binary erasure channel. We propose an efficient method to derive an upper bound to the maximum a posteriori probability (MAP) threshold for nonbinary LDPC codes, and observe that the MAP performance of regular LDPC codes improves with the alphabet size. We then consider nonbinary SC-LDPC codes. We show that the same threshold saturation effect experienced by binary SC-LDPC codes occurs for the nonbinary codes, hence we conjecture that the BP threshold for large termination length approaches the MAP threshold of the underlying regular ensemble.Comment: Submitted to IEEE International Conference on Communications 201

    Capacity-achieving ensembles for the binary erasure channel with bounded complexity

    Full text link
    We present two sequences of ensembles of non-systematic irregular repeat-accumulate codes which asymptotically (as their block length tends to infinity) achieve capacity on the binary erasure channel (BEC) with bounded complexity per information bit. This is in contrast to all previous constructions of capacity-achieving sequences of ensembles whose complexity grows at least like the log of the inverse of the gap (in rate) to capacity. The new bounded complexity result is achieved by puncturing bits, and allowing in this way a sufficient number of state nodes in the Tanner graph representing the codes. We also derive an information-theoretic lower bound on the decoding complexity of randomly punctured codes on graphs. The bound holds for every memoryless binary-input output-symmetric channel and is refined for the BEC.Comment: 47 pages, 9 figures. Submitted to IEEE Transactions on Information Theor

    Generalized Stability Condition for Generalized and Doubly-Generalized LDPC Codes

    Full text link
    In this paper, the stability condition for low-density parity-check (LDPC) codes on the binary erasure channel (BEC) is extended to generalized LDPC (GLDPC) codes and doublygeneralized LDPC (D-GLDPC) codes. It is proved that, in both cases, the stability condition only involves the component codes with minimum distance 2. The stability condition for GLDPC codes is always expressed as an upper bound to the decoding threshold. This is not possible for D-GLDPC codes, unless all the generalized variable nodes have minimum distance at least 3. Furthermore, a condition called derivative matching is defined in the paper. This condition is sufficient for a GLDPC or DGLDPC code to achieve the stability condition with equality. If this condition is satisfied, the threshold of D-GLDPC codes (whose generalized variable nodes have all minimum distance at least 3) and GLDPC codes can be expressed in closed form.Comment: 5 pages, 2 figures, to appear in Proc. of IEEE ISIT 200
    • …
    corecore