37,543 research outputs found

    Moment-Based Spectral Analysis of Random Graphs with Given Expected Degrees

    Get PDF
    In this paper, we analyze the limiting spectral distribution of the adjacency matrix of a random graph ensemble, proposed by Chung and Lu, in which a given expected degree sequence wnT=(w1(n),,wn(n))\overline{w}_n^{^{T}} = (w^{(n)}_1,\ldots,w^{(n)}_n) is prescribed on the ensemble. Let ai,j=1\mathbf{a}_{i,j} =1 if there is an edge between the nodes {i,j}\{i,j\} and zero otherwise, and consider the normalized random adjacency matrix of the graph ensemble: An\mathbf{A}_n == [ai,j/n]i,j=1n [\mathbf{a}_{i,j}/\sqrt{n}]_{i,j=1}^{n}. The empirical spectral distribution of An\mathbf{A}_n denoted by Fn()\mathbf{F}_n(\mathord{\cdot}) is the empirical measure putting a mass 1/n1/n at each of the nn real eigenvalues of the symmetric matrix An\mathbf{A}_n. Under some technical conditions on the expected degree sequence, we show that with probability one, Fn()\mathbf{F}_n(\mathord{\cdot}) converges weakly to a deterministic distribution F()F(\mathord{\cdot}). Furthermore, we fully characterize this distribution by providing explicit expressions for the moments of F()F(\mathord{\cdot}). We apply our results to well-known degree distributions, such as power-law and exponential. The asymptotic expressions of the spectral moments in each case provide significant insights about the bulk behavior of the eigenvalue spectrum

    Concentration of the Stationary Distribution on General Random Directed Graphs

    Full text link
    We consider a random model for directed graphs whereby an arc is placed from one vertex to another with a prescribed probability which may vary from arc to arc. Using perturbation bounds as well as Chernoff inequalities, we show that the stationary distribution of a Markov process on a random graph is concentrated near that of the "expected" process under mild conditions. These conditions involve the ratio between the minimum and maximum in- and out-degrees, the ratio of the minimum and maximum entry in the stationary distribution, and the smallest singu- lar value of the transition matrix. Lastly, we give examples of applications of our results to well-known models such as PageRank and G(n, p).Comment: 14 pages, 0 figure

    Testing goodness-of-fit of random graph models

    Get PDF
    Random graphs are matrices with independent 0, 1 elements with probabilities determined by a small number of parameters. One of the oldest model is the Rasch model where the odds are ratios of positive numbers scaling the rows and columns. Later Persi Diaconis with his coworkers rediscovered the model for symmetric matrices and called the model beta. Here we give goodnes-of-fit tests for the model and extend the model to a version of the block model introduced by Holland, Laskey, and Leinhard

    Spectra of complex networks

    Full text link
    We propose a general approach to the description of spectra of complex networks. For the spectra of networks with uncorrelated vertices (and a local tree-like structure), exact equations are derived. These equations are generalized to the case of networks with correlations between neighboring vertices. The tail of the density of eigenvalues ρ(λ)\rho(\lambda) at large λ|\lambda| is related to the behavior of the vertex degree distribution P(k)P(k) at large kk. In particular, as P(k)kγP(k) \sim k^{-\gamma}, ρ(λ)λ12γ\rho(\lambda) \sim |\lambda|^{1-2\gamma}. We propose a simple approximation, which enables us to calculate spectra of various graphs analytically. We analyse spectra of various complex networks and discuss the role of vertices of low degree. We show that spectra of locally tree-like random graphs may serve as a starting point in the analysis of spectral properties of real-world networks, e.g., of the Internet.Comment: 10 pages, 4 figure
    corecore