12,748 research outputs found

    Decentralized interaction and co-adaptation in the repeated prisoner's dilemma

    Get PDF
    The purpose of this paper is to propose a nonparametric interest rate term structure model and investigate its implications on term structure dynamics and prices of interest rate derivative securities. The nonparametric spot interest rate process is estimated from the observed short-term interest rates following a robust estimation procedure and the market price of interest rate risk is estimated as implied from the historical term structure data. That is, instead of imposing a priori restrictions on the model, data are allowed to speak for themselves, and at the same time the model retains a parsimonious structure and the computational tractability. The model is implemented using historical Canadian interest rate term structure data. The parametric models with closed form solutions for bond and bond option prices, namely the Vasicek (1977) and CIR (1985) models, are also estimated for comparison purpose. The empirical results not only provide strong evidence that the traditional spot interest rate models and market prices of interest rate risk are severely misspecified but also suggest that different model specifications have significant impact on term structure dynamics and prices of interest rate derivative securities.

    The limits of mean-field heterozygosity estimates under spatial extension in simulated plant populations

    Get PDF
    Computational models of evolutionary processes are increasingly required to incorporate multiple and diverse sources of data. A popular feature to include in population genetics models is spatial extension, which reflects more accurately natural populations than does a mean field approach. However, such models necessarily violate the mean field assumptions of classical population genetics, as do natural populations in the real world. Recently, it has been questioned whether classical approaches are truly applicable to the real world. Individual based models (IBM) are a powerful and versatile approach to achieve integration in models. In this study an IBM was used to examine how populations of plants deviate from classical expectations under spatial extension. Populations of plants that used three different mating strategies were placed in a range of arena sizes giving crowded to sparse occupation densities. Using a measure of population density, the pollen communication distance (Pcd), the deviation exhibited by outbreeding populations differed from classical mean field expectations by less than 5% when Pcd was less than 1, and over this threshold value the deviation significantly increased. Populations with an intermediate mating strategy did not have such a threshold and deviated directly with increasing isolation between individuals. Populations with a selfing strategy were influenced more by the mating strategy than by increased isolation. In all cases pollen dispersal was more influential than seed dispersal. The IBM model showed that mean field calculations can be reasonably applied to natural outbreeding plant populations that occur at a density in which individuals are less than the average pollen dispersal distance from their neighbors

    Spatial Pricing and the Location of Processors in Agricultural Markets

    Get PDF
    Spatially dispersed production and processing, endemic for most agricultural or renewable resource markets, causes oligopsonistic competition. The possibility and use of spatial price discrimination in these markets is well documented. It is also well known that the location of processors relative to competitors crucially affects the intensity of competition. However, insights regarding the relation between spatial price discrimination and the spatial differentiation of firms are barely present because the simultaneous investigation of these issues is often intractable analytically. We use computational economics to study these problems under a general theoretical framework. For instance, we show whether and under which conditions firms choose to differentiate their locations and/or price strategies. Results are consistent with observations in agricultural markets.spatial price competition, spatial differentiation, price discrimination, computational economics, Agribusiness,

    Long-Distance Wind-Dispersal of Spores in a Fungal Plant Pathogen: Estimation of Anisotropic Dispersal Kernels from an Extensive Field Experiment

    Get PDF
    Given its biological significance, determining the dispersal kernel (i.e., the distribution of dispersal distances) of spore-producing pathogens is essential. Here, we report two field experiments designed to measure disease gradients caused by sexually- and asexually-produced spores of the wind-dispersed banana plant fungus Mycosphaerella fijiensis. Gradients were measured during a single generation and over 272 traps installed up to 1000 m along eight directions radiating from a traceable source of inoculum composed of fungicide-resistant strains. We adjusted several kernels differing in the shape of their tail and tested for two types of anisotropy. Contrasting dispersal kernels were observed between the two types of spores. For sexual spores (ascospores), we characterized both a steep gradient in the first few metres in all directions and rare long-distance dispersal (LDD) events up to 1000 m from the source in two directions. A heavy-tailed kernel best fitted the disease gradient. Although ascospores distributed evenly in all directions, average dispersal distance was greater in two different directions without obvious correlation with wind patterns. For asexual spores (conidia), few dispersal events occurred outside of the source plot. A gradient up to 12.5 m from the source was observed in one direction only. Accordingly, a thin-tailed kernel best fitted the disease gradient, and anisotropy in both density and distance was correlated with averaged daily wind gust. We discuss the validity of our results as well as their implications in terms of disease diffusion and management strategy

    Regeneration in gap models: priority issues for studying forest responses to climate change

    Get PDF
    Recruitment algorithms in forest gap models are examined with particular regard to their suitability for simulating forest ecosystem responses to a changing climate. The traditional formulation of recruitment is found limiting in three areas. First, the aggregation of different regeneration stages (seed production, dispersal, storage, germination and seedling establishment) is likely to result in less accurate predictions of responses as compared to treating each stage separately. Second, the relatedassumptions that seeds of all species are uniformly available and that environmental conditions are homogeneous, are likely to cause overestimates of future species diversity and forest migration rates. Third, interactions between herbivores (ungulates and insect pests) and forest vegetation are a big unknown with potentially serious impacts in many regions. Possible strategies for developing better gap model representations for the climate-sensitive aspects of each of these key areas are discussed. A working example of a relatively new model that addresses some of these limitations is also presented for each case. We conclude that better models of regeneration processes are desirable for predicting effects of climate change, but that it is presently impossible to determine what improvements can be expected without carrying out rigorous tests for each new formulation

    Biology of Applied Digital Ecosystems

    Full text link
    A primary motivation for our research in Digital Ecosystems is the desire to exploit the self-organising properties of biological ecosystems. Ecosystems are thought to be robust, scalable architectures that can automatically solve complex, dynamic problems. However, the biological processes that contribute to these properties have not been made explicit in Digital Ecosystems research. Here, we discuss how biological properties contribute to the self-organising features of biological ecosystems, including population dynamics, evolution, a complex dynamic environment, and spatial distributions for generating local interactions. The potential for exploiting these properties in artificial systems is then considered. We suggest that several key features of biological ecosystems have not been fully explored in existing digital ecosystems, and discuss how mimicking these features may assist in developing robust, scalable self-organising architectures. An example architecture, the Digital Ecosystem, is considered in detail. The Digital Ecosystem is then measured experimentally through simulations, with measures originating from theoretical ecology, to confirm its likeness to a biological ecosystem. Including the responsiveness to requests for applications from the user base, as a measure of the 'ecological succession' (development).Comment: 9 pages, 4 figure, conferenc
    corecore