5,776 research outputs found

    Query processing of spatial objects: Complexity versus Redundancy

    Get PDF
    The management of complex spatial objects in applications, such as geography and cartography, imposes stringent new requirements on spatial database systems, in particular on efficient query processing. As shown before, the performance of spatial query processing can be improved by decomposing complex spatial objects into simple components. Up to now, only decomposition techniques generating a linear number of very simple components, e.g. triangles or trapezoids, have been considered. In this paper, we will investigate the natural trade-off between the complexity of the components and the redundancy, i.e. the number of components, with respect to its effect on efficient query processing. In particular, we present two new decomposition methods generating a better balance between the complexity and the number of components than previously known techniques. We compare these new decomposition methods to the traditional undecomposed representation as well as to the well-known decomposition into convex polygons with respect to their performance in spatial query processing. This comparison points out that for a wide range of query selectivity the new decomposition techniques clearly outperform both the undecomposed representation and the convex decomposition method. More important than the absolute gain in performance by a factor of up to an order of magnitude is the robust performance of our new decomposition techniques over the whole range of query selectivity

    A storage and access architecture for efficient query processing in spatial database systems

    Get PDF
    Due to the high complexity of objects and queries and also due to extremely large data volumes, geographic database systems impose stringent requirements on their storage and access architecture with respect to efficient query processing. Performance improving concepts such as spatial storage and access structures, approximations, object decompositions and multi-phase query processing have been suggested and analyzed as single building blocks. In this paper, we describe a storage and access architecture which is composed from the above building blocks in a modular fashion. Additionally, we incorporate into our architecture a new ingredient, the scene organization, for efficiently supporting set-oriented access of large-area region queries. An experimental performance comparison demonstrates that the concept of scene organization leads to considerable performance improvements for large-area region queries by a factor of up to 150

    Perspects in astrophysical databases

    Full text link
    Astrophysics has become a domain extremely rich of scientific data. Data mining tools are needed for information extraction from such large datasets. This asks for an approach to data management emphasizing the efficiency and simplicity of data access; efficiency is obtained using multidimensional access methods and simplicity is achieved by properly handling metadata. Moreover, clustering and classification techniques on large datasets pose additional requirements in terms of computation and memory scalability and interpretability of results. In this study we review some possible solutions
    • 

    corecore