21,060 research outputs found

    Direct solutions to tropical optimization problems with nonlinear objective functions and boundary constraints

    Full text link
    We examine two multidimensional optimization problems that are formulated in terms of tropical mathematics. The problems are to minimize nonlinear objective functions, which are defined through the multiplicative conjugate vector transposition on vectors of a finite-dimensional semimodule over an idempotent semifield, and subject to boundary constraints. The solution approach is implemented, which involves the derivation of the sharp bounds on the objective functions, followed by determination of vectors that yield the bound. Based on the approach, direct solutions to the problems are obtained in a compact vector form. To illustrate, we apply the results to solving constrained Chebyshev approximation and location problems, and give numerical examples.Comment: Mathematical Methods and Optimization Techniques in Engineering: Proc. 1st Intern. Conf. on Optimization Techniques in Engineering (OTENG '13), Antalya, Turkey, October 8-10, 2013, WSEAS Press, 2013, pp. 86-91. ISBN 978-960-474-339-

    A Still Simpler Way of Introducing the Interior-Point Method for Linear Programming

    Full text link
    Linear programming is now included in algorithm undergraduate and postgraduate courses for computer science majors. We give a self-contained treatment of an interior-point method which is particularly tailored to the typical mathematical background of CS students. In particular, only limited knowledge of linear algebra and calculus is assumed.Comment: Updates and replaces arXiv:1412.065

    Small Extended Formulation for Knapsack Cover Inequalities from Monotone Circuits

    Full text link
    Initially developed for the min-knapsack problem, the knapsack cover inequalities are used in the current best relaxations for numerous combinatorial optimization problems of covering type. In spite of their widespread use, these inequalities yield linear programming (LP) relaxations of exponential size, over which it is not known how to optimize exactly in polynomial time. In this paper we address this issue and obtain LP relaxations of quasi-polynomial size that are at least as strong as that given by the knapsack cover inequalities. For the min-knapsack cover problem, our main result can be stated formally as follows: for any ε>0\varepsilon >0, there is a (1/ε)O(1)nO(logn)(1/\varepsilon)^{O(1)}n^{O(\log n)}-size LP relaxation with an integrality gap of at most 2+ε2+\varepsilon, where nn is the number of items. Prior to this work, there was no known relaxation of subexponential size with a constant upper bound on the integrality gap. Our construction is inspired by a connection between extended formulations and monotone circuit complexity via Karchmer-Wigderson games. In particular, our LP is based on O(log2n)O(\log^2 n)-depth monotone circuits with fan-in~22 for evaluating weighted threshold functions with nn inputs, as constructed by Beimel and Weinreb. We believe that a further understanding of this connection may lead to more positive results complementing the numerous lower bounds recently proved for extended formulations.Comment: 21 page

    A Path Algorithm for Constrained Estimation

    Full text link
    Many least squares problems involve affine equality and inequality constraints. Although there are variety of methods for solving such problems, most statisticians find constrained estimation challenging. The current paper proposes a new path following algorithm for quadratic programming based on exact penalization. Similar penalties arise in l1l_1 regularization in model selection. Classical penalty methods solve a sequence of unconstrained problems that put greater and greater stress on meeting the constraints. In the limit as the penalty constant tends to \infty, one recovers the constrained solution. In the exact penalty method, squared penalties are replaced by absolute value penalties, and the solution is recovered for a finite value of the penalty constant. The exact path following method starts at the unconstrained solution and follows the solution path as the penalty constant increases. In the process, the solution path hits, slides along, and exits from the various constraints. Path following in lasso penalized regression, in contrast, starts with a large value of the penalty constant and works its way downward. In both settings, inspection of the entire solution path is revealing. Just as with the lasso and generalized lasso, it is possible to plot the effective degrees of freedom along the solution path. For a strictly convex quadratic program, the exact penalty algorithm can be framed entirely in terms of the sweep operator of regression analysis. A few well chosen examples illustrate the mechanics and potential of path following.Comment: 26 pages, 5 figure

    Hardness Results for Structured Linear Systems

    Full text link
    We show that if the nearly-linear time solvers for Laplacian matrices and their generalizations can be extended to solve just slightly larger families of linear systems, then they can be used to quickly solve all systems of linear equations over the reals. This result can be viewed either positively or negatively: either we will develop nearly-linear time algorithms for solving all systems of linear equations over the reals, or progress on the families we can solve in nearly-linear time will soon halt
    corecore