8,570 research outputs found

    ETS (Efficient, Transparent, and Secured) Self-healing Service for Pervasive Computing Applications

    Get PDF
    To ensure smooth functioning of numerous handheld devices anywhere anytime, the importance of self-healing mechanism cannot be overlooked. Incorporation of efficient fault detection and recovery in device itself is the quest for long but there is no existing self-healing scheme for devices running in pervasive computing environments that can be claimed as the ultimate solution. Moreover, the highest degree of transparency, security and privacy attainability should also be maintained. ETS Self-healing service, an integral part of our developing middleware named MARKS (Middleware Adaptability for Resource discovery, Knowledge usability, and Self-healing), holds promise for offering all of those functionalities

    Kelvin Probe Studies of Cesium Telluride Photocathode for AWA Photoinjector

    Full text link
    Cesium telluride is an important photocathode as an electron source for particle accelerators. It has a relatively high quantum efficiency (>1%), is sufficiently robust in a photoinjector, and has a long lifetime. This photocathode is grown in-house for a new Argonne Wakefield Accelerator (AWA) beamline to produce high charge per bunch (~50 nC) in a long bunch train. Here, we present a study of the work function of cesium telluride photocathode using the Kelvin Probe technique. The study includes an investigation of the correlation between the quantum efficiency and the work function, the effect of photocathode aging, the effect of UV exposure on the work function, and the evolution of the work function during and after photocathode rejuvenation via heating.Comment: 5 pages, 6 figure

    Proactive software rejuvenation solution for web enviroments on virtualized platforms

    Get PDF
    The availability of the Information Technologies for everything, from everywhere, at all times is a growing requirement. We use information Technologies from common and social tasks to critical tasks like managing nuclear power plants or even the International Space Station (ISS). However, the availability of IT infrastructures is still a huge challenge nowadays. In a quick look around news, we can find reports of corporate outage, affecting millions of users and impacting on the revenue and image of the companies. It is well known that, currently, computer system outages are more often due to software faults, than hardware faults. Several studies have reported that one of the causes of unplanned software outages is the software aging phenomenon. This term refers to the accumulation of errors, usually causing resource contention, during long running application executions, like web applications, which normally cause applications/systems to hang or crash. Gradual performance degradation could also accompany software aging phenomena. The software aging phenomena are often related to memory bloating/ leaks, unterminated threads, data corruption, unreleased file-locks or overruns. We can find several examples of software aging in the industry. The work presented in this thesis aims to offer a proactive and predictive software rejuvenation solution for Internet Services against software aging caused by resource exhaustion. To this end, we first present a threshold based proactive rejuvenation to avoid the consequences of software aging. This first approach has some limitations, but the most important of them it is the need to know a priori the resource or resources involved in the crash and the critical condition values. Moreover, we need some expertise to fix the threshold value to trigger the rejuvenation action. Due to these limitations, we have evaluated the use of Machine Learning to overcome the weaknesses of our first approach to obtain a proactive and predictive solution. Finally, the current and increasing tendency to use virtualization technologies to improve the resource utilization has made traditional data centers turn into virtualized data centers or platforms. We have used a Mathematical Programming approach to virtual machine allocation and migration to optimize the resources, accepting as many services as possible on the platform while at the same time, guaranteeing the availability (via our software rejuvenation proposal) of the services deployed against the software aging phenomena. The thesis is supported by an exhaustive experimental evaluation that proves the effectiveness and feasibility of our proposals for current systems

    09201 Abstracts Collection -- Self-Healing and Self-Adaptive Systems

    Get PDF
    From May 10th 2009 to May 15th 2009 the Dagstuhl Seminar 09201 ``Self-Healing and Self-Adaptive Systems\u27\u27 was held in Schloss Dagstuhl~--~Leibniz Center for Informatics. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar are put together in this paper. Links to extended abstracts or full papers are provided, if available. A description of the seminar topics, goals and results in general can be found in a separate document ``Executive Summary\u27\u27

    Realisation of the D067 project: implementation of the CPS accelerator complex control system

    Get PDF
    The aim of this document is to give a general overview of the implementation of the CPS Accelerator Complex Control System as a part of the D067 project. Within the framework of this project, the main reasons for the collaboration between PS and SL Divisions, which allowed the common design of the accelerator control system, will be reiterated. A description of the basic concepts and constraints, m ain parts, operator interface and applications, exploitation and future evolution of the CPS realisation of this common accelerator control system is given. A chronological list of references (main ly of conference presentations) completes the report
    • …
    corecore