640 research outputs found

    Resilience and Controllability of Dynamic Collective Behaviors

    Get PDF
    The network paradigm is used to gain insight into the structural root causes of the resilience of consensus in dynamic collective behaviors, and to analyze the controllability of the swarm dynamics. Here we devise the dynamic signaling network which is the information transfer channel underpinning the swarm dynamics of the directed interagent connectivity based on a topological neighborhood of interactions. The study of the connectedness of the swarm signaling network reveals the profound relationship between group size and number of interacting neighbors, which is found to be in good agreement with field observations on flock of starlings [Ballerini et al. (2008) Proc. Natl. Acad. Sci. USA, 105: 1232]. Using a dynamical model, we generate dynamic collective behaviors enabling us to uncover that the swarm signaling network is a homogeneous clustered small-world network, thus facilitating emergent outcomes if connectedness is maintained. Resilience of the emergent consensus is tested by introducing exogenous environmental noise, which ultimately stresses how deeply intertwined are the swarm dynamics in the physical and network spaces. The availability of the signaling network allows us to analytically establish for the first time the number of driver agents necessary to fully control the swarm dynamics

    Consensusability of discrete-time multi-agent systems

    Get PDF
    The study of multi-agent systems (MAS) focuses on systems in which many intelligent agents interact within an environment. The agents are considered to be autonomous entities. MAS can be used to solve problems that are difficult or impossible for an individual agent to solve. The main feature which is achieved when developing MAS, if they work, is flexibility, since MAS can be added to, modified and reconstructed, without the need for detailed rewriting of the application. MAS can manifest self-organization as well as self-steering related complex behaviors even when the individual strategies of all their agents are simple. The goal of MAS research is to find methods that allow us to build complex systems composed of autonomous agents who, while operating on local knowledge and possessing only limited abilities, are nonetheless capable of enacting the desired global behaviors. We want to know how to take a description of what a system of agents should do and break it down into individual agent behaviors. This thesis investigates the problem when discrete-time MAS are consensusable under undirected graph. A discussion is provided to show how the problem differs from continuous time system. Then a consensusability condition is derived in terms of the Mahler measure of the agent system for single input single out systems (SISO) and result shows that there is an improved consensusability by a power of two. An algorithm is proposed for distributed consensus feedback control law when the consensusability holds. Also the case of output feedback is considered in which the consensusability problem becomes more complicated. To solve this we decompose the problem into two parts i.e. state feedback and state estimation. Simulation results demonstrate the effectiveness of the established results

    Collective turns in jackdaw flocks: kinematics and information transfer

    Get PDF
    This is the author accepted manuscript. The final version is available from The Royal Society via the DOI in this record.The rapid, cohesive turns of bird flocks are one of the most vivid examples of collective behaviour in nature, and have attracted much research. Three-dimensional imaging techniques now allow us to characterize the kinematics of turning and their group-level consequences in precise detail. We measured the kinematics of flocks of wild jackdaws executing collective turns in two contexts: during transit to roosts and anti-predator mobbing. All flocks reduced their speed during turns, probably because of constraints on individual flight capability. Turn rates increased with the angle of the turn so that the time to complete turns remained constant. We also find that context may alter where turns are initiated in the flocks: for transit flocks in the absence of predators, initiators were located throughout the flocks, but for mobbing flocks with a fixed ground-based predator, they were always located at the front. Moreover, in some transit flocks, initiators were far apart from each other, potentially because of the existence of subgroups and variation in individual interaction ranges. Finally, we find that as the group size increased the information transfer speed initially increased, but rapidly saturated to a constant value. Our results highlight previously unrecognized complexity in turning kinematics and information transfer in social animals.Human Frontier Science Progra

    Combining video and numeric data in the analysis of sign languages with the ELAN annotation software

    No full text
    This paper describes hardware and software that can be used for the phonetic study of sign languages. The field of sign language phonetics is characterised, and the hardware that is currently in use is described. The paper focuses on the software that was developed to enable the recording of finger and hand movement data, and the additions to the ELAN annotation software that facilitate the further visualisation and analysis of the data
    corecore