21,577 research outputs found

    Critical sets of full Latin squares

    Get PDF
    This thesis explores the properties of critical sets of the full n-Latin square and related combinatorial structures including full designs, (m,n,2)-balanced Latin rectangles and n-Latin cubes. In Chapter 3 we study known results on designs and the analogies between critical sets of the full n-Latin square and minimal defining sets of the full designs. Next in Chapter 4 we fully classify the critical sets of the full (m,n,2)-balanced Latin square, by describing the precise structures of these critical sets from the smallest to the largest. Properties of different types of critical sets of the full n-Latin square are investigated in Chapter 5. We fully classify the structure of any saturated critical set of the full n-Latin square. We show in Theorem 5.8 that such a critical set has size exactly equal to n³ - 2n² - n. In Section 5.2 we give a construction which provides an upper bound for the size of the smallest critical set of the full n-Latin square. Similarly in Section 5.4, another construction gives a lower bound for the size of the largest non-saturated critical set. We conjecture that these bounds are best possible. Using the results from Chapter 5, we obtain spectrum results on critical sets of the full n-Latin square in Chapter 6. In particular, we show that a critical set of each size between (n - 1)³ + 1 and n(n - 1)² + n - 2 exists. In Chapter 7, we turn our focus to the completability of partial k-Latin squares. The relationship between partial k-Latin squares and semi-k-Latin squares is used to show that any partial k-Latin square of order n with at most (n - 1) non-empty cells is completable. As Latin cubes generalize Latin squares, we attempt to generalize some of the results we have established on k-Latin squares so that they apply to k-Latin cubes. These results are presented in Chapter 8

    Latin bitrades derived from groups

    Get PDF
    A latin bitrade is a pair of partial latin squares which are disjoint, occupy the same set of non-empty cells, and whose corresponding rows and columns contain the same set of entries. Dr\'apal (\cite{Dr9}) showed that a latin bitrade is equivalent to three derangements whose product is the identity and whose cycles pairwise have at most one point in common. By letting a group act on itself by right translation, we show how some latin bitrades may be derived from groups without specifying an independent group action. Properties of latin trades such as homogeneousness, minimality (via thinness) and orthogonality may also be encoded succinctly within the group structure. We apply the construction to some well-known groups, constructing previously unknown latin bitrades. In particular, we show the existence of minimal, kk-homogeneous latin trades for each odd k3k\geq 3. In some cases these are the smallest known such examples.Comment: 23 page

    Critical sets in the elementary abelian 2- and 3- groups

    Full text link
    In 1998, Khodkar showed that the minimal critical set in the Latin square corresponding to the elementary abelian 2-group of order 16 is of size at most 124. Since the paper was published, improved methods for solving integer programming problems have been developed. Here we give an example of a critical set of size 121 in this Latin square, found through such methods. We also give a new upper bound on the size of critical sets of minimal size for the elementary abelian 2-group of order 2n2^n: 4n3n+42n2n24^{n}-3^{n}+4-2^{n}-2^{n-2}. We speculate about possible lower bounds for this value, given some other results for the elementary abelian 2-groups of orders 32 and 64. An example of a critical set of size 29 in the Latin square corresponding to the elementary abelian 3-group of order 9 is given, and it is shown that any such critical set must be of size at least 24, improving the bound of 21 given by Donovan, Cooper, Nott and Seberry.Comment: 9 page
    corecore