13,920 research outputs found

    Labour Pooling: Impacts on Capacity Planning

    Get PDF
    Cross-training workers to perform multi-skilled jobs is one of the modern trends in job design. As companies engage in downsizing, the remaining workforce is expected to do more and different tasks. This paper presents a formal definition and a practical solution for optimizing the size and cost of the pool of multi-skilled workers for production units operated under batch manufacturing. The pool size is optimized through a search procedure applied separately to just-in-time (JIT) and Level production plans, which are derived from the stones heuristic. The method allows direct calculation of the cost savings from labour pooling. This paper was inspired by consulting in the food industry, where implementation of these results has significantly reduced labour costs

    Operations planning test bed under rolling horizons, multiproduct,multiechelon, multiprocess for capacitated production planning modelling with strokes

    Full text link
    [EN] One of the problems when conducting research in mathematical programming models for operations planning is having an adequate database of experiments that can be used to verify advances and developments with enough factors to understand different consequences. This paper presents a test bed generator and instances database for a rolling horizons analysis for multiechelon planning, multiproduct with alternatives processes, multistroke, multicapacity with different stochastic demand patterns to be used with a stroke-like bill of materials considering production costs, setup, storage and delays for operations management. From the analysis of the operations planning obtained from this test bed, it is concluded that a product structure with an alternative process obtains the lowest total cost and the highest service level. In addition, decreasing seasonal demand could present a lower total cost than constant demand, but would generate a worse service level. This test bed will allow researchers further investigation so as to verify improvements in forecast methods, rolling horizons parameters, employed software, etc.Rius-Sorolla, G.; Maheut, J.; Estelles Miguel, S.; García Sabater, JP. (2021). Operations planning test bed under rolling horizons, multiproduct,multiechelon, multiprocess for capacitated production planning modelling with strokes. Central European Journal of Operations Research. 29:1289-1315. https://doi.org/10.1007/s10100-020-00687-5S1289131529Araujo SA, Arenales MN, Clark A (2007) Joint rolling-horizon scheduling of materials processing and lot-sizing with sequence-dependent setups. J Heuristics 13(4):337–358. https://doi.org/10.1007/s10732-007-9011-9ASIC (2018) Clúster de cálculo: Rigel. http://www.upv.es/entidades/ASIC/catalogo/857893normalc.html. Accessed date 22 July 2018Baker KR (1977) An experimental study of the effectiveness of rolling schedules in production planning. Decis Sci 8(1):19–27. https://doi.org/10.1111/j.1540-5915.1977.tb01065.xBarrett RT, LaForge RL (1991) A study of replanning frequencies in a material requirements planning system. Comput Oper Res 18(6):569–578. https://doi.org/10.1016/0305-0548(91)90062-VBehnamian J, Fatemi Ghomi SMT (2014) A survey of multi-factory scheduling. J Intell Manuf 27:1–19. https://doi.org/10.1007/s10845-014-0890-yBillington PJ, McClain JO, Thomas LJ (1983) Mathematical programming approaches to capacity-constrained MRP systems: review, formulation and problem reduction. Manag Sci 29(10):1126–1141. https://doi.org/10.1287/mnsc.29.10.1126Blackburn JD, Millen RA (1980) Heuristic lot-sizing performance in a rolling-schedule environment. Decis Sci 11(4):691–701. https://doi.org/10.1111/j.1540-5915.1980.tb01170.xCao Y (2015) Long-distance procurement planning in global sourcing. Ecole Centrale Paris. https://tel.archives-ouvertes.fr/tel-01154871/. Accessed 15 Dec 2017Carlson RC, Beckman SL, Kropp DH (1982) The effectiveness o extending the horizon in rolling production scheduling. Decis Sci 13(1):129–146. https://doi.org/10.1111/j.1540-5915.1982.tb00136.xChand S, Hsu VN, Sethi S (2002) Forecast, solution, and rolling horizons in operations management problems: a classified bibliography. Manuf Serv Oper Manag 4(1):25–43. https://doi.org/10.1287/msom.4.1.25.287Coronado-Hernández JR (2016) Análisis del efecto de algunos factores de complejidad e incertidumbre en el rendimiento de las Cadenas de Suministro. Propuesta de una herramienta de valoración basada en simulación. Universitat Politècnica de València, Valencia (Spain). https://doi.org/10.4995/Thesis/10251/61467de Sampaio RJB, Wollmann RRG, Vieira PFG (2017) A flexible production planning for rolling-horizons. Int J Prod Econ 190:31–36. https://doi.org/10.1016/j.ijpe.2017.01.003DeYong GD, Cattani KD (2016) Fenced in? Stochastic and deterministic planning models in a time-fenced, rolling-horizon scheduling system. Eur J Oper Res 251(1):85–95. https://doi.org/10.1016/j.ejor.2015.11.006Federgruen A, Tzur M (1994) Minimal forecast horizons and a new planning procedure for the general dynamic lot sizing model: nervousness revisited. Oper Res 42(3):456–468. https://doi.org/10.1287/opre.42.3.456Fisher ML, Ramdas K, Zheng YS (2001) Ending inventory valuation in multiperiod production scheduling. Manag Sci 47(5):679–692. https://doi.org/10.1287/mnsc.47.5.679.10485Garcia-Sabater JP, Maheut J, Garcia-Sabater JJ (2009. A capacitated material requirements planning model considering delivery constraints: a case study from the automotive industry. In: 2009 international conference on computers and industrial engineering, IEEE, pp 378–383. https://doi.org/10.1109/ICCIE.2009.5223806Garcia-Sabater JP, Maheut J, Garcia-Sabater JJ (2012) A two-stage sequential planning scheme for integrated operations planning and scheduling system using MILP: the case of an engine assembler. Flex Serv Manuf J 24(2):171–209. https://doi.org/10.1007/s10696-011-9126-zGarcia-Sabater JP, Maheut J, Marin-Garcia JA (2013) A new formulation technique to model materials and operations planning: the generic materials and operations planning (GMOP) problem. Eur J Ind Eng 7(2):119. https://doi.org/10.1504/EJIE.2013.052572Hair JF, Prentice E, Cano D (1999) Análisis multivariante. Prentice-Hall, Upper Saddle RiverHozak K, Hill JA (2009) Issues and opportunities regarding replanning and rescheduling frequencies. Int J Prod Res 47(18):4955–4970. https://doi.org/10.1080/00207540802047106Hsu CH, Yang HC (2017) Real-time near-optimal scheduling with rolling horizon for automatic manufacturing cell. IEEE Access 5:3369–3375. https://doi.org/10.1109/ACCESS.2016.2616366Jans R (2009) Solving lot-sizing problems on parallel identical machines using symmetry-breaking constraints. Inf J Comput 21(1):123–136. https://doi.org/10.1287/ijoc.1080.0283Karimi B, Fatemi Ghomi SMT, Wilson JM (2003) The capacitated lot sizing problem: a review of models and algorithms. Omega 31(5):365–378. https://doi.org/10.1016/S0305-0483(03)00059-8Kimms A (1997) Multi-level lot sizing and scheduling, vol 53. Physica-Verlag, Heidelberg. https://doi.org/10.1007/978-3-642-50162-3Kleindorfer P, Kunreuther H (1978) Stochastic horizons for the aggregate planning problem. Manag Sci 24(5):485–497. https://doi.org/10.1287/mnsc.24.5.485Kumar BK, Nagaraju D, Narayanan S (2016) Supply chain coordination models: a literature review. Indian J Sci Technol. https://doi.org/10.17485/ijst/2016/v9i38/86938Lalami I, Frein Y, Gayon JP (2017) Production planning in automotive powertrain plants: a case study. Int J Prod Res 55(18):5378–5393. https://doi.org/10.1080/00207543.2017.1315192Lee HL, Padmanabhan V, Whang S (1997) The bullwhip effect in supply chains 1. Sloan Manag Rev Assoc 38(3):93–102. https://doi.org/10.1287/mnsc.43.4.546Lee DU, Villasenor JD, Luk W, Leong PHW (2006) A hardware Gaussian noise generator using the box-muller method and its error analysis. IEEE Trans Comput 55(6):659–671. https://doi.org/10.1109/TC.2006.81Lv Y, Zhang J, Qin W (2017) A genetic regulatory network-based method for dynamic hybrid flow shop scheduling with uncertain processing times. Appl Sci 7(1):23. https://doi.org/10.3390/app7010023Maheut J (2013) Modelos y Algoritmos Basados en el Concepto Stroke para la Planificación y Programación de Operaciones con Alternativas en Redes de Suministro. Universitat Politècnica de València, Valencia (Spain). https://doi.org/10.4995/Thesis/10251/29290Maheut J, Garcia-Sabater JP (2011) La matriz de operaciones y materiales y la matriz de operaciones y recursos, un nuevo enfoque para resolver el problema GMOP basado en el concepto del stroke. Direccion y Organizacion 45:46–57Maheut J, Garcia-sabater JP, Mula J (2012) A supply chain operations lot-sizing and scheduling model with alternative operations. In: Sethi SP, Bogataj M, Ros-McDonnell L (eds) Industrial engineering: innovative networks. Springer, London, pp 309–316. https://doi.org/10.1007/978-1-4471-2321-7Meindl B, Templ M (2012) Analysis of commercial and free and open source solvers for linear optimization problems. Common Tools and Harmonized Methodologies for SDC in the ESS, pp 1–13. http://neon.vb.cbs.nl/cascprivate/..%5Ccasc%5CESSNet2%5Cdeliverable_solverstudy.pdf. Accessed 15 Dec 2016Meyr H (2002) Simultaneous lotsizing and scheduling on parallel machines. Eur J Oper Res 139(2):277–292. https://doi.org/10.1016/S0377-2217(01)00373-3Narayanan A, Robinson P (2010) Evaluation of joint replenishment lot-sizing procedures in rolling horizon planning systems. Int J Prod Econ 127(1):85–94. https://doi.org/10.1016/j.ijpe.2010.04.038Nedaei H, Mahlooji H (2014) Joint multi-objective master production scheduling and rolling horizon policy analysis in make-to-order supply chains. Int J Prod Res 52(9):2767–2787. https://doi.org/10.1080/00207543.2014.884732Newman M (2005) Power laws, Pareto distributions and Zipf’s law. Contemp Phys 46(5):323–351. https://doi.org/10.1080/00107510500052444Omar MK, Bennell JA (2009) Revising the master production schedule in a HPP framework context. Int J Prod Res 47(20):5857–5878. https://doi.org/10.1080/00207540802130803Pérez C (2002) Estadística práctica con Statgraphics®. PEARSON EDUCACIÓN, S. A, MadridPoler R, Mula J (2011) Forecasting model selection through out-of-sample rolling horizon weighted errors. Expert Syst Appl 38(12):14778–14785. https://doi.org/10.1016/j.eswa.2011.05.072Prasad PSS, Krishnaiah Chetty OV (2001) Multilevel lot sizing with a genetic algorithm under fixed and rolling horizons. Int J Adv Manuf Technol 18(7):520–527. https://doi.org/10.1007/s0017010180520Rafiei R, Gaudreault J, Bouchard M, Santa-Eulalia L (2012) A reactive planning approach for demand-driven wood remanufacturing industry: a real-scale application, vol 71. CIRRELT, MontrealRafiei R, Nourelfath M, Gaudreault J, Santa-Eulalia LA, Bouchard M (2014) A periodic re-planning approach for demand-driven wood remanufacturing industry: a real-scale application. Int J Prod Res 52(14):4198–4215. https://doi.org/10.1080/00207543.2013.869631Ramezanian R, Fallah Sanami S, Shafiei Nikabadi M (2017) A simultaneous planning of production and scheduling operations in flexible flow shops: case study of tile industry. Int J Adv Manuf Technol 88(9–12):2389–2403. https://doi.org/10.1007/s00170-016-8955-zRodriguez MA, Montagna JM, Vecchietti A, Corsano G (2017) Generalized disjunctive programming model for the multi-period production planning optimization: an application in a polyurethane foam manufacturing plant. Comput Chem Eng 103:69–80. https://doi.org/10.1016/j.compchemeng.2017.03.006Sahin F, Narayanan A, Robinson EP (2013) Rolling horizon planning in supply chains: review, implications and directions for future research. Int J Prod Res 51(18):5413–5436. https://doi.org/10.1080/00207543.2013.775523Sethi S, Sorger G (1991) A theory of rolling horizon decision making. Ann Oper Res 29(1):387–415. https://doi.org/10.1007/BF02283607Simpson NC (2001) Questioning the relative virtues of dynamic lot sizing rules. Comput Oper Res 28(9):899–914. https://doi.org/10.1016/S0305-0548(00)00015-0Stadtler H (2000) Improved rolling schedules for the dynamic single-level lot-sizing problem. Manag Sci 46(2):318–326. https://doi.org/10.1287/mnsc.46.2.318.11924Stadtler H (2003) Multilevel lot sizing with setup times and multiple constrained resources: internally rolling schedules with lot-sizing windows. Oper Res 51(3):487–502. https://doi.org/10.1287/opre.51.3.487.14949Tiacci L, Saetta S (2012) Demand forecasting, lot sizing and scheduling on a rolling horizon basis. Int J Prod Econ 140:803–814. https://doi.org/10.1016/j.ijpe.2012.02.007Trigeiro WW (1987) A dual-cost heuristic for the capacitated lot sizing problem. IIE Trans 19(1):67–72. https://doi.org/10.1080/07408178708975371Wolsey LA (2002) Solving multi-item lot-sizing problems with an MIP solver using classification and reformulation. Manage Sci 48(12):1587–1602. https://doi.org/10.1287/mnsc.48.12.1587.442Xie J, Zhao X, Lee TS (2003) Freezing the master production schedule under single resource constraint and demand uncertainty. Int J Prod Econ 83(1):65–84. https://doi.org/10.1016/S0925-5273(02)00262-1Yıldırım I, Tan B, Karaesmen F (2005) A multiperiod stochastic production planning and sourcing problem with service level constraints. OR Spectrum 27(2–3):471–489. https://doi.org/10.1007/s00291-005-0203-0Zhao X, Xie J (1998) Multilevel lot-sizing heuristics and freezing the master production schedule in material requirements planning systems. Prod Plan Control 9(4):371–384. https://doi.org/10.1080/095372898234109Zoller K, Robrade A (1988) Efficient heuristics for dynamic lot sizing. Int J Prod Res 26(2):249–265. https://doi.org/10.1080/00207548808947857Zulkafli NI, Kopanos GM (2017) Integrated condition-based planning of production and utility systems under uncertainty. J Clean Prod 167:776–805. https://doi.org/10.1016/j.jclepro.2017.08.15

    Evaluation of sales and operations planning in a process industry

    Get PDF
    Cette thèse porte sur la planification des ventes et des opérations (S±&OP) dans une chaîne d'approvisionnements axée sur la demande. L'objectif de la S±&OP, dans un tel contexte, est de tirer profit de l'alignement de la demande des clients avec la capacité de la chaîne d'approvisionnement par la coordination de la planification des ventes, de la production, de la distribution et de l'approvisionnement. Un tel processus de planification exige une collaboration multifonctionnelle profonde ainsi que l'intégration de la planification. Le but étant d'anticiper l'impact des décisions de vente sur les performances de la chaîne logistique , alors que l'influence de la dynamique des marchés est prise en compte pour les décisions concernant la production, la distribution et l'approvisionnement. La recherche a été menée dans un environnement logistique manufacturier multi-site et multi-produit, avec un approvisionnement et des ventes régis par des contrats ou le marché. Cette thèse examine deux approches de S±&OP et fournit un support à la décision pour l'implantation de ces méthodes dans une chaîne logistique multi-site de fabrication sur commande. Dans cette thèse, une planification traditionnelle des ventes et de la production basée sur la S±feOP et une planification S±fcOP plus avancée de la chaîne logistique sont tout d'abord caractérisées. Dans le système de chaîne logistique manufacturière multi-site, nous définissons la S±&OP traditionnelle comme un système dans lequel la planification des ventes et de la production est effectuée conjointement et centralement, tandis que la planification de la distribution et de l'approvisionnement est effectuée séparément et localement à chaque emplacement. D'autre part, la S±fcOP avancée de la chaîne logistique consiste en la planification des ventes, de la production, de la distribution et de l'approvisionnement d'une chaîne d'approvisionnement effectuée conjointement et centralement. Basés sur cette classification, des modèles de programmation en nombres entiers et des modèles de simulation sur un horizon roulant sont développés, représentant, respectivement, les approches de S±&OP traditionnelle et avancée, et également, une planification découplée traditionnelle, dans laquelle la planification des ventes est effectuée centralement et la planification de la production, la distribution et l'approvisionnement est effectuée séparément et localement par les unités d'affaires. La validation des modèles et l'évaluation pré-implantation sont effectuées à l'aide d'un cas industriel réel utilisant les données d'une compagnie de panneaux de lamelles orientées. Les résultats obtenus démontrent que les deux méthodes de S±feOP (traditionnelle et avancée) offrent une performance significativement supérieure à celle de la planification découplée, avec des bénéfices prévus supérieurs de 3,5% et 4,5%, respectivement. Les résultats sont très sensibles aux conditions de marché. Lorsque les prix du marché descendent ou que la demande augmente, de plus grands bénéfices peuvent être réalisés. Dans le cadre de cette recherche, les décisions de vente impliquent des ventes régies par des contrats et le marché. Les décisions de contrat non optimales affectent non seulement les revenus, mais également la performance manufacturière et logistique et les décisions de contrats d'approvisionnement en matière première. Le grand défi est de concevoir et d'offrir les bonnes politiques de contrat aux bons clients de sorte que la satisfaction des clients soit garantie et que l'attribution de la capacité de la compagnie soit optimisée. Également, il faut choisir les bons contrats des bons fournisseurs, de sorte que les approvisionnements en matière première soient garantis et que les objectifs financiers de la compagnie soient atteints. Dans cette thèse, un modèle coordonné d'aide à la décision pour les contrats e développé afin de fournir une aide à l'intégration de la conception de contrats, de l'attribution de capacité et des décisions de contrats d'approvisionnement pour une chaîne logistique multi-site à trois niveaux. En utilisant la programmation stochastique à deux étapes avec recours, les incertitudes liées à l'environnement et au système sont anticipées et des décisions robustes peuvent être obtenues. Les résultats informatiques montrent que l'approche de modélisation proposée fournit des solutions de contrats plus réalistes et plus robustes, avec une performance prévue supérieure d'environ 12% aux solutions fournies par un modèle déterministe

    E-Fulfillment and Multi-Channel Distribution – A Review

    Get PDF
    This review addresses the specific supply chain management issues of Internet fulfillment in a multi-channel environment. It provides a systematic overview of managerial planning tasks and reviews corresponding quantitative models. In this way, we aim to enhance the understanding of multi-channel e-fulfillment and to identify gaps between relevant managerial issues and academic literature, thereby indicating directions for future research. One of the recurrent patterns in today’s e-commerce operations is the combination of ‘bricks-and-clicks’, the integration of e-fulfillment into a portfolio of multiple alternative distribution channels. From a supply chain management perspective, multi-channel distribution provides opportunities for serving different customer segments, creating synergies, and exploiting economies of scale. However, in order to successfully exploit these opportunities companies need to master novel challenges. In particular, the design of a multi-channel distribution system requires a constant trade-off between process integration and separation across multiple channels. In addition, sales and operations decisions are ever more tightly intertwined as delivery and after-sales services are becoming key components of the product offering.Distribution;E-fulfillment;Literature Review;Online Retailing

    An integrated approach to inventory and flexible capacity management subject to fixed costs and non-stationary stochastic demand

    Get PDF
    In a manufacturing system with flexible capacity, inventory management can be coupled with capacity management in order to handle fluctuations in demand more effectively. Typical examples include the effective use of temporary workforce and overtime production. In this paper, we discuss an integrated model for inventory and flexible capacity management under non-stationary stochastic demand with the possibility of positive fixed costs, both for initiating production and for using contingent capacity. We analyze the characteristics of the optimal policies for the integrated problem. We also evaluate the value of utilizing flexible capacity under different settings, which enable us to develop managerial insights. © 2008 The Author(s)

    Tactical capacity management under capacity flexibility in make-to-stock systems

    Get PDF

    Examining the implications of the anti-money laundering and countering financing of Terrorism Act 2009 on New Zealand accounting firms

    Get PDF
    Money laundering is the act of introducing illicitly gained funds into the economy to assist in concealing their origin. On October 1 2018, it became mandatory for most New Zealand accounting firms to comply with the Anti-Money Laundering and Countering Financing of Terrorism Act 2009. The purpose of this act is to help detect and deter money laundering within New Zealand. The AML/CFT Act creates additional requirements for accounting firms and has severe penalties for non-compliance. This led to the research question of ‘What are the implications of the AML/CFT Act 2009 on New Zealand Accounting firms?’ For this research, interviews were conducted with accounting firms to help identify the costs and implications associated with the AML/CFT requirements. The results revealed that despite the October 1 deadline, accounting firms are still implementing programs. The new requirements were unclear and underestimated by firms. Large money and time costs were reported by all the interview participants and they all feel that the new requirements are excessive. As the AML/CFT Act is still new, it would be beneficial to explore further research in the future that examines the actual impact of maintaining the AML/CFT programs
    • …
    corecore