411 research outputs found

    Petri nets for systems and synthetic biology

    Get PDF
    We give a description of a Petri net-based framework for modelling and analysing biochemical pathways, which uni¯es the qualita- tive, stochastic and continuous paradigms. Each perspective adds its con- tribution to the understanding of the system, thus the three approaches do not compete, but complement each other. We illustrate our approach by applying it to an extended model of the three stage cascade, which forms the core of the ERK signal transduction pathway. Consequently our focus is on transient behaviour analysis. We demonstrate how quali- tative descriptions are abstractions over stochastic or continuous descrip- tions, and show that the stochastic and continuous models approximate each other. Although our framework is based on Petri nets, it can be applied more widely to other formalisms which are used to model and analyse biochemical networks

    Modelling bacterial regulatory networks with Petri nets

    Get PDF
    To exploit the vast data obtained from high throughput molecular biology, a variety of modelling and analysis techniques must be fully utilised. In this thesis, Petri nets are investigated within the context of computational systems biology, with the specific focus of facilitating the creation and analysis of models of biological pathways. The analysis of qualitative models of genetic networks using safe Petri net techniques was investigated with particular reference to model checking. To exploit existing model repositories a mapping was presented for the automatic translation of models encoded in the Systems Biology Markup Language (SBML) into the Petri Net framework. The mapping is demonstrated via the conversion and invariant analysis of two published models of the glycolysis pathway. Dynamic stochastic simulations of biological systems suffer from two problems: computational cost; and lack of kinetic parameters. A new stochastic Petri net simulation tool, NASTY was developed which addresses the prohibitive real-time computational costs of simulations by using distributed job scheduling. In order to manage and maximise the usefulness of simulation results a new data standard, TSML was presented. The computational power of NASTY provided the basis for the development of a genetic algorithm for the automatic parameterisation of stochastic models. This parameter estimation technique was evaluated on a published model of the general stress response of E. coli. An attempt to enhance the parameter estimation process using sensitivity analysis was then investigated. To explore the scope and limits of applying the Petri net techniques presented, a realistic case study investigated how the Pho and aB regulons interact to mitigate phosphate stress in Bacillus subtilis. This study made use of a combination of qualitative and quantitative Petri net techniques and was able to confirm an existing experimental hypothesis.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Modelling bacterial regulatory networks with Petri nets

    Get PDF
    To exploit the vast data obtained from high throughput molecular biology, a variety of modelling and analysis techniques must be fully utilised. In this thesis, Petri nets are investigated within the context of computational systems biology, with the specific focus of facilitating the creation and analysis of models of biological pathways. The analysis of qualitative models of genetic networks using safe Petri net techniques was investigated with particular reference to model checking. To exploit existing model repositories a mapping was presented for the automatic translation of models encoded in the Systems Biology Markup Language (SBML) into the Petri Net framework. The mapping is demonstrated via the conversion and invariant analysis of two published models of the glycolysis pathway. Dynamic stochastic simulations of biological systems suffer from two problems: computational cost; and lack of kinetic parameters. A new stochastic Petri net simulation tool, NASTY was developed which addresses the prohibitive real-time computational costs of simulations by using distributed job scheduling. In order to manage and maximise the usefulness of simulation results a new data standard, TSML was presented. The computational power of NASTY provided the basis for the development of a genetic algorithm for the automatic parameterisation of stochastic models. This parameter estimation technique was evaluated on a published model of the general stress response of E. coli. An attempt to enhance the parameter estimation process using sensitivity analysis was then investigated. To explore the scope and limits of applying the Petri net techniques presented, a realistic case study investigated how the Pho and aB regulons interact to mitigate phosphate stress in Bacillus subtilis. This study made use of a combination of qualitative and quantitative Petri net techniques and was able to confirm an existing experimental hypothesis.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Efficient Analysis and Synthesis of Complex Quantitative Systems

    Get PDF

    Third Workshop and Tutorial on Practical Use of Coloured Petri Nets and the CPN Tools, Aarhus, Denmark, August 29-31, 2001

    Get PDF
    This booklet contains the proceedings of the Third Workshop on Practical Use of Coloured Petri Nets and the CPN Tools, August 29-31, 2001. The workshop is organised by the CPN group at Department of Computer Science, University of Aarhus, Denmark. The papers are also available in electronic form via the web pages: http://www.daimi.au.dk/CPnets/workshop01

    Lifted structural invariant analysis of Petri net product lines

    Full text link
    Petri nets are commonly used to represent concurrent systems. However, they lack support for modelling and analysing system families, like variants of controllers, different variations of a process model, or the possible configurations of a flexible assembly line. To facilitate modelling potentially large collections of similar systems, in this paper, we enrich Petri nets with variability mechanisms based on product line engineering. Moreover, we present methods for the efficient analysis of the place and transition invariants in all defined versions of a Petri net. Efficiency is achieved by analysing the system family as a whole, instead of analysing each possible net variant separately. For this purpose, we lift the notion of incidence matrix to the product line level, and rely on constraint solving techniques. We present tool support and evaluate the benefits of our techniques on synthetic and realistic examples, achieving in some cases speed-ups of two orders of magnitude with respect to analysing each net variant separatelyThis work has been funded by the Spanish Ministry of Science (PID2021-122270OB-I00) and the R&D programme of Madrid (P2018/TCS-4314

    Tools and Algorithms for the Construction and Analysis of Systems

    Get PDF
    This book is Open Access under a CC BY licence. The LNCS 11427 and 11428 proceedings set constitutes the proceedings of the 25th International Conference on Tools and Algorithms for the Construction and Analysis of Systems, TACAS 2019, which took place in Prague, Czech Republic, in April 2019, held as part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2019. The total of 42 full and 8 short tool demo papers presented in these volumes was carefully reviewed and selected from 164 submissions. The papers are organized in topical sections as follows: Part I: SAT and SMT, SAT solving and theorem proving; verification and analysis; model checking; tool demo; and machine learning. Part II: concurrent and distributed systems; monitoring and runtime verification; hybrid and stochastic systems; synthesis; symbolic verification; and safety and fault-tolerant systems

    Fifth Workshop and Tutorial on Practical Use of Coloured Petri Nets and the CPN Tools Aarhus, Denmark, October 8-11, 2004

    Get PDF
    This booklet contains the proceedings of the Fifth Workshop on Practical Use of Coloured Petri Nets and the CPN Tools, October 8-11, 2004. The workshop is organised by the CPN group at the Department of Computer Science, University of Aarhus, Denmark. The papers are also available in electronic form via the web pages: http://www.daimi.au.dk/CPnets/workshop0
    corecore